An Introduction to Writing a XORP Process
Version 1.8-CT

XORP, Inc. and individual contributors
http://www.candelatech.com/xorp.ct/
XOrp-users@xorp.org

June 1, 2010

Contents

Introduction
Overview
The XRL Interface of static_routes

Using thestatic _routes XRL Interface
4.1 Generating stub code for the caller
4.2 Generating stub code for the target

The Main Loop

Calling XRLs on the RIB
6.1 Returningvaluesin XRLs.

Compiling the Source Code
The XLOG Logging Facility
Thertrmgr Template Files

Modification History

16

20
26

27

28

32

33

1 Introduction

This document is intented for a developer who wishes to write a XORP mdmeisdoesn’t know where to
start. We’'ll walk through a simple XORP process, discussing how to defideise XRL interfaces, and
how the bits fit together.

This is a first pass at such a document. We’re bound to have missed thihgsehmot obvious when
you're starting out. Please provide us feedback as to how much help thisn@at is; what really helped,
what's missing, and what isn't explained properly.

We’ll assume that you have copies of four other XORP design documents:

e XORP Design Overview[1]
e XORP Libxorp Library Overview[3]
e XORP Inter-Process Communication Library Overview[2]

e XRL Interfaces: Specifications and Tools[4]

These are available from the XORP web server. You should probatéy/read these through quickly
so you're aware what additional information is available before readisgdtfcument further. It's recom-
mended to read them in the order above.

We will assume you are familiar with what an XRL request is, the overall gtraof the processes on
a XORP router, and with C++.

2 Overview

In this document we’ll work through by example the structure of a simple XpiRPEess. We've chosen the
static routesprocess as an example. At the time of writing, this document is in sync with timeesoade
for staticroutes, but this is not guaranteed to always be the case.

static_routesis a very simple XORP process. To a first approximation, it receives Xarifiguration
requests from thgorp_rtrmgr to set up static routing entries, stores the entries, and communicates them to
the RIB using XRLs.

This makes it a good example, because it exports an XRL interface to athmasges (typically the
xorp_rtrmgr) and calls XRLs on the XRL interface of another XORP processRtBg. But it doesn't do all
that much else, so there are few files and the code is quite readable.

The source code for thetatic routesprocess is found in theorp/static _routes subdirectory of the
XORP source tree.

We'll walk through the main pieces of statioutes in the following order:

e The XRL interface of staticoutes.

Implementing the XRL interface of statioutes.

The main loop of static routes.

Calling XRLs on the RIB.

Compiling the source code

3 The XRL Interface of static routes

XRL interfaces are defined by.&if file (pronouncedlot-ziff). xif stands for XRL InterFace. Alkif
files reside inxorp/xrl/interfaces

The relevant file for us igorp/xrl/interfaces/static _routes.xif . The first part of this file is
shown in Listing 1.

Listing 1: The start okorp/xrl/interfaces/static _routes.xif
| *
* Static Routes XRL interface.
*/

interface static_routes/0.1 {

| **

* Enable/disable/start/stop StaticRoutes.

*

* @param enable if true, then enable StaticRoutes, otherwise
* disable it.

*/

enable_static_routes ? enable: bool
start_static_routes

stop_static_routes

| **

* Add/replace/delete a static route.

@param unicast if true, then the route would be used for unica st
routing.

@param multicast if true, then the route would be used in the

MRIB (Multicast Routing Information Base) for multicast pu rpose
(e.g., computing the Reverse-Path Forwarding information).
@param network the network address prefix this route applie s to.
@param nexthop the address of the next-hop router for this ro ute.
@param metric the metric distance for this route.

L T . T

*

*/
add_route4 ? unicast: bool & multicast: bool & network:ipv4net \
& nexthop:ipv4d & metric:u32

add_route6 ? unicast: bool & multicast: bool & network:ipvbnet \
& nexthop:ipvé & metric:u32

The filestatic _routes.xif defines all the XRLs that are part of thiatic _routes XRL interface.
These are XRLs that other processes can call osttite routesprocess.

The format of the file is basically the keywoiitterface followed by the name and version of this
particular interface, followed by a list of XRLs. In this case the name of ttesface isstatic _routes
but this does not have to be the same as the name of the process. Tha wersiger is0.1 . Version

numbers are generally increased when a change is made that is noabd€kwmpatible, but the precise
value has no important meaning.

The list of XRLs is demarked by bracgs... }, and one XRL is given per line. Blank lines and
comments are allowed, and a backslash before the newline can be usétiadasm XRL over multiple
lines to aid readability.

Thus the first XRL in this file is:
static _routes/0.1/enable _static _routes?enable:bool

When this XRL is actually called, it would look like:
finder://static _routes/static _routes/0.1/enable _static _routes?enable:bool=true

Thefinder partindicates that the XRL is an abstract one - we don't yet know whatamsport param-
etersare. Thefirstatic _routes indicatesthe name of the target process, and the setatitd _routes
is the name of the interface, taken from the XIF file. A process can supmmre than one interface, and an
interface definition can be used by more than one process, hence tfieatiomp in a process as simple as
static routes

4 Using thestatic _routes XRL Interface

Now we have seen how the XRLs comprising the statigtes interface are defined, we shall examine how
processes actually use them. For any particular interface, there arep@sodiuser:

e The process that calls the XRLs and gets back responses. This is caléRltcaller.

e The process on which the XRL is called, and which generates respombésis called the XRL
target

XORP provides scripts which can generate C++ code to make life much &adverth these parties.

4.1 Generating stub code for the caller

If we examine the fileMakefile.am (the automake Makefile) irorp/xrl/interfaces , we find the
fragment in Listing 2.

Listing 2: Fragment fronxorp/xrl/interfaces/Makefile.am

BHHHHHHHHHHH B
Client Interface related
HHHHH R R R R HHHHHHHH R

BGP MIB traps
noinst_LTLIBRARIES = libbgpmibtrapsxif.la
libbgpmibtrapsxif la_ SOURCES = bgp_mib_traps_xif.hh bg p_mib_traps_xif.cc

StaticRoutes Interface
noinst LTLIBRARIES += libstaticroutesxif.la
libstaticroutesxif la SOURCES = static_routes_xif.hh s tatic_routes_xif.cc

BHHHHHHHHHHH B
Static Pattern Rules
HHHHH R R R R R HHH R

SCRIPT_DIR=$(top_srcdir)/xrl/scripts
CLNTGEN_PY=$(SCRIPT_DIR)/cInt-gen

@PYTHON_BUILD@%_xif.cc %_xif.nh $(srcdir)/%_xif.nh $(s rcdir)/%_xif.cc: \
$(sredir)/%.xif $(CLNTGEN_PY)
@PYTHON_BUILD@ $(PYTHON) $(CLNTGEN_PY) $<

This adddibstaticroutesxif.la to the list of libraries that should be built, and indicates that the
source files for this library arstatic _routes xif.hh andstatic _routes _xif.cc

The last part is pretty cryptic, but basically is a generic rule that sayéitdsmending withxif.cc and
xif.hh will be generated from files ending witkif using the python script callednt-gen

So what actually happens here is that theditgic _routes.xif is processed byint-gen to pro-
ducestatic _routes xif.hh andstatic _routes xif.cc ,which are then compiled and linked into the
library libstaticroutesxif.la . Any process that wants to call teeatic routesinterface can link with
this library.

So what functionality does this library provide? Listing 3 shows a fragmrent the machine-generated
file static _routes xif.hh . Between themstatic _routes xif.hh andstatic _routes xif.cc

define the machine-generated clagStaticRoutesVOp1Client and its complete implementation.
Listing 3: Fragment fronxorp/xrl/interfaces/static _routes _xif.hh
cl ass XrlStaticRoutesVOp1Client {
public:
XrIStaticRoutesVVOp1Client(XrISender * s) : _sender(s) {}
vi rtual ~“XrlStaticRoutesVOp1Client() {}
t ypedef XorpCallbackl< void, const XrlError&>::RefPtr AddRoute4CB;
| **
* Send Xrl intended to:
*
* Add/replace/delete a static route.
*
* @param dst_xrl_target nhame the Xrl target name of the desti nation.
*
* @param unicast if true, then the route would be used for unica st
* routing.
*
* @param multicast if true, then the route would be used in the M RIB
* (Multicast Routing Information Base) for multicast purpos e (e.g.,
* computing the Reverse-Path Forwarding information).
*
* @param network the network address prefix this route applie s to.
*
* @param nexthop the address of the next-hop router for this ro ute.
*
* @param metric the metric distance for this route.
* |
bool send_add route4(
const char~* dst_xrl_target _name,
const bool & unicast,
const bool & multicast,
const IPv4Net& network,
const IPv4& nexthop,
const uint32_t& metric,
const AddRoute4CB& cb
)i
}

The constructor foxrlStaticRoutesVOp1Client takes a pointer to axrlSender as its parameter.
Typically this is actually arxrlRouter - we’ll come to this in more detail later.

Then for every XRL defined istatic _routes.xif there is a method to be called on an instance of
XrlStaticRoutesVOp1Client . The example we’ll look at here #&nd _add _route4() , although there
are many more methods definecstatic _routes.xif

If you compare the methosknd _add route4() in Listing 3 with the XRLadd _route4 in Listing 1,
it should be pretty clear where this comes from. Basically, when you call
XrIStaticRoutesVOp1Client::send _add _route4 with all the parametersuficast , nexthop , etc).
set appropriately, the XRhdd route4 will be called. You don’t need to concern yourself with how the
parameters are marshalled into the right syntax for the XRL, or how the X&ttislly transmitted, or even
how the target process is discovered. But you do need to safrtfee _name parameter to the same thing
that thestatic _routes process sets it to, otherwise the XRhderwon't be able to route your XRL to its
destination. Often the target name will be the same as the name of the procésis casestatic routes
but if there are multiple instances of the interface then you’ll need to figuirevbich target name to use.

You'll also notice that some of the parameters for XRL functions are nipten@++ types. In this case,
network is of typelPv4Net andnexthop is of typelPv4 . Classes instantiating the these additional types
are found inlibxorp and are used throughout XORP.

The final parameter isonst AddRoute4CB& cb
Earlier in the Listing we can see that this is defined as:
typedef XorpCallbackl<void, const XrlError&>::RefPtr Ad dRoute4CB;

This definesAddRoute4CB to be acallbackwhich returns typeoid with one parameter of typeonst
XrlError&

But what exactly is @allback ?

Well, what we want is to call theend _add _route4() = method to send an XRL request to 8iatic routes
process, and then to go off and do other things while we're waiting for éspanse to come back. In
a multi-threaded architecture, this might be achieved by haséng _add route4() block until the re-
sponse is ready, but XORP is deliberatelyt a multi-threaded architecture. Thus what happens is that
send _add _route4() will return immediately. It will return false if a local error occurs, but willnaally
return true before the XRL has actually been sent. Some time later the respiinsome back from the
static routesprocess, and we need a way to direct the response to the right clase@8iat is expecting
it. This is achieved in XORP through the usecaflbacks

A callback is created using thellback() function from libxorp. We'll discuss this in more detalil
when we look at how thstatic routesprocess sends changes to the RIB in Section 6. For now, it suffices to
say that a callback must be created and passedénitb_add route4() , and that this is how the response
from theadd route4() XRL is returned to the right place.

4.2 Generating stub code for the target

The other side to the XRL story is how the XRL target implements the XRLs. To #testhis, we will look

at how thestatic_routesprocess implements the XRL interface definedtatic _routes.xif . AXORP
process can implement more than one interface. In fact most XORP pesdesplement a special-purpose
interface and also themmmoninterface, which provides XRLs to query basic version and status intfama
about a target process.

To see what interfaces a particular target process supports we mkshltdwe xorp/xrl/targets
directory. Listing 4 shows the entire contentsstdtic _routes.tgt . This file defines that the XRL
target callecstatic _routes implements the two interface®emmon/0.1 andstatic _routes/0.1

In the static routesprocess, we’d prefer not to have to write all the code to unmarshall XiRb<C++,
and marshall the response back into an XRL response, so again we clseengenerated C++ stubs to free
the programmer from having to do most of the tedious work. Listing 5 showsrdar of fragments from
xorp/xrl/targets/Makefile.am related to thestatic _routes target.

In Listing 5, the first important point is thatatic _routes.tgt is added to the list ofgt _files
From eachtgt file, a.xrls file will be generated using the python scrigtgen according to the magic
at the bottom of the listing.

Inthe case oftatic _routes.tgt , the filestatic _routes.xrls will be generated. This file simply
contains a listing of all the fully expanded XRLs supported bysladc _routes XRL target.

The next important point to note from Listing 5 is that we have specified teatant to build a library
calledlibstaticroutesbase.la . This is going to be the library that ttstatic routesprocess links with
to get access to all the stub code to implement the target part of this interface.

Finally there’s the directive to builtbstaticroutesbase.la from the machine-generated source
files static _routes _base.hh andstatic _routes _base.cc , and that these files depend on the files
common.xif andstatic _routes.xif

So, what doedibstaticroutesbase.la actually provide? Listing 6 shows some extracts from
static _routes _base.hh . Basicallylibstaticrouteshase.la defines a class called
XriStaticRoutesTargetBase which will be used to receive XRL requests.

The constructor foXriStaticRoutesTargetBase takes a single parameter which is typically the
XrIRouter for the process. AXrIRouter is an object that is bound to &ventLoopmnd which sends and
receives XRL requests. Each process has itsBwantLoop In Section 5 we’ll look at what the EventLoop
does. In any event, once an instanc&$étaticRoutesTargetBase has been created with a pointer to
aworkingXrlRouter , then the process is ready to receive XRL requests fostthie _routes interface.
But first we have to actually write some code.

If we look in at Listing 6, we see that the methsigtic _routes _0_1_add route4() has been de-
fined. However the method ispaire virtual which means that it is defined here, but there is no implemen-
tation of this inXrIStaticRoutesTargetBase . So how do we actually make use of this?

The general idea is that the stub generation code knows the syntax fiargi@sinterface, so it generates
all the code needed to check that incoming requests match the defined apdtdvandle errors if they
don’t. But the stub generation code has no idea what this interface acticedty We need to supply an
implemenation fostatic _routes _0_1_add _route4() that actually does what we want when this XRL
is called.

Listing 4: Contents okorp/xrl/targets/static _routes.tgt

#i ncl ude "common.xif"

#i ncl ude "finder_event_observer.xif"
#i ncl ude "policy_backend.xif"

#i ncl ude "static_routes.xif"

target static_routes implements common/0.1, \
finder_event_observer/0.1, \
policy backend/0.1, \
static_routes/0.1

Listing 5: Extracts fromxorp/xrl/targets/Makefile.am

T R R ST R
Xrl Target related
HHAHHHHH R HHHHH A HH AR

Add your target file here

tgt_files = bgp.tgt

tgt_files += static_routes.tgt

Automatically compute the list of the * Xxrls files
xrls_files = $(tgt_files:%.tgt=%.xrls)

Add your target's library here
noinst_LTLIBRARIES libbgpbase.la
noinst_LIBRARIES libbgpbase.a

noinst_LTLIBRARIES += libstaticroutesbase.la

StaticRoutes

libstaticrouteshase la_ SOURCES = static_routes_base.h h static_routes_base.cc

$(srcdir)/static_routes_base.hh $(srcdir)/static_rou tes_base.cc: \
$(INTERFACES_DIR)/common.xif \
$(INTERFACES_DIR)/finder_event_observer.xif \
$(INTERFACES_DIR)/policy_backend.xif \

$(INTERFACES_DIR)/static_routes.xif

HHEHHHHHH R HHHHHAHHHHH AR
Implicit Rules and related
HHHHHHH T HEHHHHHEH T

SCRIPT_DIR=$(top_srcdir)/xrl/scripts
TGTGEN_PY=$(SCRIPT_DIR)/tgt-gen

If this code is commented out, please upgrade to python2.0 or above.
@PYTHON_BUILD@$(srcdir)/%_base.hh $(srcdir)/%_base.c ¢ % base.hh % base.cc

@PYTHON_BUILD@$(srcdir)/%.xrls: $(srcdir)/%.tgt $(TGT GEN_PY)
@PYTHON_BUILD@ $(PYTHON) $(TGTGEN_PY) -I$(INTERFACES_IR) $<

10

Listing 6: Extracts fromxorp/xrl/targets/static _routes _base.hh

cl ass XrlStaticRoutesTargetBase {

public:

| **

= Constructor.

*

* @param cmds an XrlCmdMap that the commands associated with t he target
* should be added to. This is typically the XrlRouter
* associated with the target.
*/
XrIStaticRoutesTargetBase(XrICmdMap * cmds = 0);
pr ot ect ed:
[**

* Pure-virtual function that needs to be implemented to:

*

*

Add/replace/delete a static route.

* *

@param unicast if true, then the route would be used for unica st
routing.

*

*

*

@param multicast if true, then the route would be used in the M RIB
(Multicast Routing Information Base) for multicast purpos e (e.g.,
computing the Reverse-Path Forwarding information).

* % %

*

@param network the network address prefix this route applie s to.

* @param nexthop the address of the next-hop router for this ro ute.
*
* @param metric the metric distance for this route.
* [
vi rtual XrlICmdError static_routes_0_1 add_route4(
/I Input values,

const bool & unicast,
const bool & multicast,
const IPv4Net& network,
const IPv4& nexthop,

const uint32_t& metric) = O;

11

Listing 7: Extracts fronmxorp/static _routes/xrl _static _routes _node.hh

cl ass XrlStaticRoutesNode : publ i ¢ StaticRoutesNode,
publ i ¢ XrIStdRouter,
publ i ¢ XriStaticRoutesTargetBase {

public:
XrIStaticRoutesNode(EventLoop& eventloop,

const string& class_name,
const string& finder_hostname,
uintl6 t finder_port,
const string& finder_target,
const string& fea_target,
const string& rib_target);

pr ot ect ed:

1
/I XRL target methods
1

XrlICmdError static_routes 0 _1 add_route4(
/I Input values,

const bool & unicast,
const bool & multicast,
const IPv4Net& network,
const IPv4& nexthop,

const uint32_t& metric);

private:

XrIRibVOp1Client _xrl_rib_client;

So now we come at last to the implementation ofstegic routesprocess. This is in the
xorp/static _routes directory.

We have created a file calledl _static _routes _node.hh to define our class that actually imple-
ments the code to receive and process XRLs. An extract from this isnshrowisting 7. We have
defined our own class calledriStaticRoutesNode which is a child class ofStaticRoutesNode
XriStdRouter ~ and XrlStaticRoutesTargetBase classes. We'll ignore thé&taticRoutesNode
class in this explanation, because it's specific todtaic routesprocess, but the important thing is that
XrlStaticRoutesNode is a child of theXrIStaticRoutesTargetBase base class that was generated
by the stub compiler, and a child of txelStdRouter ~ base class.

The constructor for ouxriStaticRoutesNode class takes a number of parameters which are specific
to this particular implementation, but it also takes a number of parameters thesear @ the constructor of
theXrIStdRouter base class.

12

We also see from Listing 7 that oXrIStaticRoutesNode class is going to implement the
static _routes _0_1_add route4() method from the stub compiler which was a pure virtual method in
the base class.

13

Listing 8: Extracts fronmxorp/static _routes/xrl _static _routes _node.cc

#i ncl ude "static_routes_node.hh"
#i ncl ude "xrl_static_routes_node.hh"

XrlStaticRoutesNode:: XrIStaticRoutesNode(EventLoop& eventloop,
const string& class_name,
const string& finder_hostname,
uintl6_t finder_port,
const string& finder_target,
const string& fea_ target,
const string& rib_target)

. StaticRoutesNode(eventloop),
XrIStdRouter(eventloop, class_name.c_str(), finder_ho stname.c_str(),
finder_port),
XriStaticRoutesTargetBase(&xrl_router()),

_xrl_rib_client(&xrl_router()),

XrlICmdError
XrlStaticRoutesNode::static_routes 0_1 add_route4(
/I Input values,

const bool & unicast,
const bool & multicast,
const IPv4Net& network,
const IPv4& nexthop,
const uint32_t& metric)
{
string error_msg;
i f (StaticRoutesNode::add_route4(unicast, multicast, net work, nexthop,
"™, "™, metric, error_msg)
I= XORP_OK) {
return XrlICmdError::COMMAND_FAILED(error_msg);
}
return XrICmdError::OKAY();
}
In Listing 8, we see an extract fronorp/static _routes/xrl _static _routes _node.cc Wwhere
we have actually implemented theStaticRoutesNode class.
The constructor foiXriStaticRoutesNode passes a humber of arguments to ¥nStdRouter
base class, and then passes to the constructor fotriBeticRoutesTargetBase base class a pointer

14

to this XrIStdRouter ~ base class (the return result for methat _router()). In addition, it initial-
izes a lot of its own state (not shown). Note that if we were implementing a modaledtes not re-

ceive any XRLs (e., it won't use the equivalent ofriStaticRoutesTargetBase), then we must call
XrIStdRouter::finalize() afterXrIStdRouter has been created.
The complete implementation &flIStaticRoutesNode::static _routes _0_1_add route4() is

shown. In this case, most of the actual work is done elsewhere, buetieza) idea is clear. This is where
we actually receive and process the incoming XRL request.

Once we have processed the request, we need to return from this miéth@IXRL had actually taken
any return values, there would have been parameters tetdlie _routes _0_1 add_route4 method
that were notonst references, and we would simply have set the values of these variadites loall-
ing return to pass the values back to the XRL caller. In the casstatic routeshowever, none of the
XRLs return any values other than success or failure. We retd@mdError::OKAY/() if all is well,
or XriCmdError::COMMAND _FAILED(error _msg) if something went seriously wrong, passing back a
human-readable string for diagnostic purposes.

In general, if an error response needs to return machine-readaterngéormation, it is often better to
returnXrlCmdError:: OKAY () together with return parameters to indicate that an error occurred artd wha
actually happened, becauseC®MMANBAILED is returned, the return parameter values are not passed up
to the caller application.

15

5 The Main Loop

So far we've looked at how to define an XRL interface, how to compile the §ubs for that interface, and
how to define the actual code that implements that interface. Now we neecdktatidoe main loop of a
XORP process to see how these pieces all come together.

In Listing 10 the main pieces obrp/static ~ _routes/xorp ~ _static _routes.cc are shown. These
comprise the entire initialization part and main loop of static routesprocess.

First come the #includes. Convention indicates that the first of thetstic(_routes _module.h) is
a header file defining the module name and version - this information is usetebynieludes which will
complain if this information is not available. The contenstftic = _routes _module.h is very simple. It
must defineXORP_MODULE_NAMBEIXORP_MODULE_VERSION

Listing 9: Listing ofxorp/static _routes/static _routes _module.h

#i f ndef XORP_MODULE_NAME

#def i ne XORP_MODULE_NAME "STATIC_ROUTES"
#endi f

#i f ndef XORP_MODULE_VERSION

#def i ne XORP_MODULE_VERSION "0.1"

#endi f

Then we include the functionality frofibxorp that we’ll need:

e libxorp/xorp.h : generic headers that should always be included.

e libxorp/xlog.h : XORP logging functionality. The convention is to use XLOG macros to log
warnings and error messages, so we can redefine how logging if impledmarftéure without re-
writing the code that uses logging. See Section 8 for more information al®XLOG facility.

e libxorp/debug.h : XORP debugging functionality.

e libxorp/callback.hh : XORP callback templates, needed to pass a handle into event handling
code to be called later when an event occurs.

e libxorp/eventloop.hh : the main XORP eventloop.

e libxorp/exceptions.hh : standard exceptions for standard stuff - useful as a debugging aid.

Finally we include the definition of the class that implementssthic _routes XRL interface target
class we just defined.

In the processemain() function, we intialize thexlog logging functionality. Then (not shown) we
handle command line arguments.

The main part of this process occurs within a singlatch ~ statement. Theatch part then handles
any of the xorp standard exceptions that might be thrown. It is not intetidg any unhandled exceptions
actually get this far, but if they do, thexorp _catch _standard _exceptions() will ensure that appropri-
ate diagnostic information is available when the process expires. This isaquited, but it is good coding
practice.

The actual main loop that does all the work istatic _routes _main() .

First, theEventLoop is created. Every XORP process should have preciselysweatLoop . All
processing in a XORP process is event-driven from the eventloopn¥ikerocess is idle, it will be blocked

16

in EventLoop::run() . When an XRL request arrives, or an XRL response arrives tionexr expires, or
activity occurs on a registered file handle, then an event handler wikilleddrom the eventloop.

Next we create alriStdRouter . This is the object that will be used to send and receive XRLs from
this process. We pass it tli@entLoop object, information about the host and port where the XRL finder
is located, and the XRL target name of this process: in this'castiz _routes"

Then we create an instance of kiStaticRoutesNode class we defined earlier to receive XRLs on
thestatic _routes XRL targetinterface. Inside this object there will be the corresponditgidRouter
object for sending and receiving XRLs from this process. We paxd$taticRoutesNode the follow-

ing:

e TheEventLoop object.

The XRL target name of this process: in this c&satic _routes"

Information about the host and port where the XRL finder is located.

Information about the names of other XRL targets we need to communicate véthirtier, the FEA,
and the RIB.

Before we proceed any further, we must give the XrlStdRouter time totezgisir existence with the
Finder. Thus we callvait _until _xrl _router _is _ready()

17

Listing 10: Extracts fromxorp/static _routes/xorp _static _routes.cc

1
1
I

4

#i
#i
#i
#i
#i
#i

#i

XORP StaticRoutes module implementation.

ncl ude "static_routes_module.h"

ncl ude "libxorp/xorp.h"

ncl ude "libxorp/xlog.h"

ncl ude "libxorp/debug.h”

ncl ude "libxorp/callback.hh"
ncl ude "libxorp/eventloop.hh"
ncl ude "libxorp/exceptions.hh"

ncl ude "xrl_static_routes_node.hh"

static void
static_routes_main(const string& finder_hostname, uintl6_t finder_port)

{

1

/I Init stuff

1

EventLoop eventloop;

1
/I StaticRoutes node
1l
XrIStaticRoutesNode xrl_static_routes _node(
eventloop,
"static_routes",
finder_hostname,
finder_port,
"finder",
"fea",
"rib");
wait_until_xrl_router_is_ready(eventloop,
xrl_static_routes_node.xrl_router());

/I Startup
xrl_static_routes_node.startup();

1l

/I Main loop

1

whi | e (! xrl_static_routes_node.is_done()) {
eventloop.run();

}

18

i nt
main(i nt argc, char =*argv[])
{
int ch;
string::size_type idx;
const char =argv0 = argv|0];
string finder_hostname = FinderConstants::FINDER_DEFAU LT HOST().str();
uintl6_t finder_port = FinderConstants::FINDER_DEFAULT _PORTY();

1

/I Initialize and start xlog

1

xlog_init(argv[0], NULL);

xlog_set verbose(XLOG_VERBOSE_LOW); /I Least verbose messages
/I XXX: verbosity of the error messages temporary increased

xlog_level_set verbose(XLOG_LEVEL_ERROR, XLOG_VERBOS E_HIGH);
xlog_add_default_output();

xlog_start();

1
/I Run everything
1
try {
static_routes_main(finder_hostname, finder_port);
} catch(..) {
xorp_catch_standard_exceptions();
}

1

/I Gracefully stop and exit xlog
1

xlog_stop();

xlog_exit();

exit (0);

Finally we're ready to go. We set our internal state as ready, and etitgat éoop that we will only exit
when it is time to terminate this process. At the core of this loop, wesza@lhtLoop::run() repeatedly.
run() will block when there are no events to process. When an event is repdydess, the relevant event
handler will be called, either directly viaallback or indirectly through one of the XRL stub handler
methods we defined earlier. Thus if another process calls the
finder://static _routes/static _routes/0.1/add _routed XRL, the first we'll know about it is
whenXrlStaticRoutesNode::static _routes _0_1_add_route4() is executed.

19

6 Calling XRLs on the RIB

So far we have seen how we define an XRL interface, how we implementgfet &ide of such an interface,
and how the main loop of a XORP process is structured. In the castataf routes we can now receive
XRLs informing us of routes. Thetatic routesprocess will do some checks and internal processing on
these routes (such as checking that they go out over a network irgdtfacis currently up). Finally it
will communicate the remaining routes to the RIB process for use by the fdingaplane. We will now
examine how we send these routes to the RIB.

If we look in xorp/xrl/interfaces we find the filerib.xif which defines the XRLs available on
therib interface. Listing 11 shows some extracts from this file. As we've beenviwitp through the
add route4 XRL, we'll again look at that here. We'll also look at theokup _route _by dest4 XRL
because this is an example of an XRL that returns some data, although tigslpaiXRL is not actually
used by thestatic routesprocess. It is also worth noting in passing that the RIB requires a routotgqol
(such asstatic routeg to calladd _igp _table4 before sending routes to the RIB, or the RIB will not know
what to do with the routes.

As we saw with thestatic _routes.xif file, the rib.xif file is processed by a python script to
produce the filesib xif.hh andrib xif.cc in the xorp/xrl/interfaces directory which are then
compiled and linked to produce tlibribxif.la library. This library provides a class definition which
does all the work of marshalling C++ arguments into XRLs, sending the XRLet®iB process, receiving
the response, and calling the relevant callback in the caller process witbsih@nse data.

Listing 12 shows some extracts frafth xif.hh so we can see what the C++ interface to this library
looks like. The library implements a class callgdRibVOp1Client . To use this code, we must first
create an instance of this class, calling the constructor and supplyingtarmtoimanXriSender . Typically
such an XrlSender is an instance obatRouter object.

In Listing 7 we can see that our implementation of clgdStaticRoutesNode actually defined an
instance oiXrlRibVOp1Client called xrl rib _client as a member variable, so this object is created
automatically when our main loop creates _static _routes _node in Listing 10. In Listing 8 we can
see that we passed _router into the constructor forxrl _rib _client

So, once everything else has been initialized, we’ll have accessltarib _client from within
xrl _static _routes _node. Now, how do we make use of this generated code? The answer is simple:
to send a route to the RIB we simply cakrl rib _client.send _add_route4() with the appropriate
parameters, and the generated library code will do the rest. We can seeltisitng 13, where this code is
actually used.

The only real complication here is related to how we get the response l@awktie XRL. Recall
that xrl _rib _client.send _add_route4() will return immediately with a local success or failure re-
sponse, before the XRL has actually been transmitted to the RIB. Thusedetogass @allbackin to
send _add _route4() . This callback will wrap up enough state so that when the response fiegliyns to
the XrIRouter in thestatic routesprocess, it will know which method to call on which object with which
parameters so as to send the response to the right place.

We can see ixXrIRibVOp1Client (Listing 7) that the type of the callback is:

XorpCallbackl<void, const XrlError&>::RefPtr

This defines a callback function that retumogd and which takes one argument of tyqmast XrlError&

If we look in Listing 13 we seen that the methgdStaticRoutesNode::send _rib _route _change _ch()
fits exactly these criteria. This is the method we are going to use to receivesthense from our XRL re-
quest.

20

Listing 11: Extracts fronxorp/xrl/interfaces/rib.xif

interface rib/0.1 {

| *x

* Add/delete an IGP or EGP table.

* @param protocol the name of the protocol.

* @param target _class the target class of the protocol.

* @param target_instance the target instance of the protocol

* @param unicast true if the table is for the unicast RIB.

* @param multicast true if the table is for the multicast RIB.

*/

add_igp_table4 ? protocol:txt
& target_class:txt & target_instance:txt\
& unicast: bool & multicast: bool

| *x

*

Add/replace/delete a route.

@param protocol the name of the protocol this route comes fro
@param unicast true if the route is for the unicast RIB.
@param multicast true if the route is for the multicast RIB.
@param network the network address prefix of the route.

* @param nexthop the address of the next-hop router toward the
* destination.

* @param metric the routing metric.

* @param policytags a set of policy tags used for redistributi

*/

* X *

*

add_route4 ? protocol:txt & unicast: bool & multicast:

& network:ipvdnet & nexthop:ipv4d & metric:u32
& policytags:list

replace_route4 ? protocol:txt & unicast: bool & multicast:

& network:ipv4dnet & nexthop:ipv4d & metric:u32
& policytags:list

delete_route4 ? protocol:itxt & unicast: bool & multicast:

& network:ipv4net

* Lookup nexthop.

* @param addr address to lookup.

* @param unicast look in unicast RIB.

* @param multicast look in multicast RIB.

* @param nexthop contains the resolved nexthop if successful

* |Pv4::ZERO otherwise. It is an error for the unicast and mult
* fields to both be true or both false.

*/

lookup_route_by dest4 ? addriipv4 & unicast: bool & multicast:

-> nexthop:ipv4

m.
on.
bool \
bool \
bool \
icast
bool \

21

Listing 12: Extracts fromxorp/xrl/interfaces/rib xif.hh

cl ass XrlRibVOp1Client {
publi c:
XrIRibVOpl1Client(XrISender * s) . _sender(s) {}

typedef XorpCallbackl< void, const XrlError&>::RefPtr AddRoute4CB;

| **

*

Send Xrl intended to:

*
* Add/replace/delete a route.
*
* @param dst_xrl_target hame the Xrl target name of the desti nation.
* @param protocol the name of the protocol this route comes fro m.
* @param unicast true if the route is for the unicast RIB.
* @param multicast true if the route is for the multicast RIB.
* @param network the network address prefix of the route.
* @param nexthop the address of the next-hop router toward the
* destination.
* @param metric the routing metric.
* @param policytags a set of policy tags used for redistributi on.
*/
bool send_add_route4(
const char=* dst_xrl_target _name,
const string& protocol,
const bool & unicast,
const bool & multicast,
const IPv4Net& network,
const IPv4& nexthop,
const uint32_t& metric,
const XrlAtomList& policytags,
const AddRoute4CB& cb
)i
t ypedef XorpCallback2< voi d, const XrlError&, const [IPv4 *>::RefPtr LookupRo
uteByDest4CB;
| **

* Send Xrl intended to:
Lookup nexthop.

@param dst_xrl_target_ name the Xrl target name of the desti nation.
@param addr address to lookup.

@param unicast look in unicast RIB.

* @param multicast look in multicast RIB.

* 0% kX Xk

* [
bool send_lookup route by dest4(
const char=* dst_xrl_target name,
const IPv4& addr,
const bool & unicast,
const bool & multicast,

const LookupRouteByDest4CB& cb

22

23

Listing 13: Extracts fronxorp/static _routes/xrl _static _routes _node.cc

voi d
XrIStaticRoutesNode::send_rib_route_change()
{
bool success = true;
StaticRoute& static_route = _inform_rib_queue.front();

1
/I Send the appropriate XRL
1
i f (static_route.is_add_route()) {
i f (static_route.is_ipv4()) {
i f (static_route.is_interface_route()) {

} else {

success = _xrl_rib_client.send_add_route4(
_rib_target.c_str(),
StaticRoutesNode::protocol_name(),
static_route.unicast(),
static_route.multicast(),
static_route.network().get_ipv4net(),
static_route.nexthop().get_ipv4(),
static_route.metric(),
static_route.policytags().xrl_atomlist(),
callback(this, &XrlStaticRoutesNode::send_rib_route _change_cb));

i f (success)

return;
}
}
}
voi d
XrlStaticRoutesNode::send_rib_route_change_cb(const XrlError& xrl_error)
{

swi tch (xrl_error.error_code()) {

case OKAY:
1
/I If success, then send the next route change
1
_inform_rib_queue.pop_front();
send_rib_route_change();
br eak;

case COMMAND_FAILED:
I
/I 1f a command failed because the other side rejected it,
/I then print an error and send the next one.
1

24

br eak;
case NO_FINDER:
case RESOLVE_FAILED:
case SEND_FAILED:

br eak;
case BAD_ARGS:
case NO_SUCH_METHOD:
case INTERNAL_ERROR:

br eak;

case REPLY_TIMED_OUT:

case SEND_FAILED_TRANSIENT:

br eak;

25

We actually create the callback using the call:
callback(this, &XrlStaticRoutesNode::send _rib _route _change _ch)
In the context of Listing 13his refers to a pointer to the current instanc&dbtaticRoutesNode . So,
what this callback does is to wrap a pointer to the metbwdl rib _route _change _cb() on the current
instance ofXrlStaticRoutesNode . Later on, when the response returns, the XrlIRouter will call the
send rib _route _change _ch() method on this specific instance X StaticRoutesNode and supply
it with a parameter of typeonst XrlError&

In the implementation ofend _rib _route _change cb() we can see that we check the value of the
xrl _error parameter to see whether the XRL call was actually successful or not téthrn error code
is OKAYwe send the next route change. Otherwise, we take different actised ba the error type.

6.1 Returning values in XRLs

Because thstatic routesprocess is so simple, none of the XRLs it calls actually return any information in
the response. However, it's rather common that we want to make a regfueesarget and get back some
information. This is quite easy to do, but just requires a different callltaak can receive the relevant
parameters.

In Listing 11 we saw that the XRlookup _route _by_dest4 returns one value of typiev4 called
nexthop . XRLs can actually return multiple parameters - this is merely a simple example.

In Listing 12 we can see that the callback we need to suupdgnd lookup _route _by dest4() is
of type:
XorpCallback2<void, const XrlError&, const IPv4 * > RefPtr
This is just like the callback we have already seen, except that the methodllteck will call must take
two arguments. The first must be of typenst XrlError& and the second must be of typenst
IPv4 =, Although static routeshas no such callback method, if it did it might look like the function
lookup _route _by _dest4 _cb inListing 14. The callback itself to be passed isémd _lookup _route _by _dest4()
is created in exactly the same way as the one we passeskimioadd _route4()

Listing 14: Hypothetical callback fasend _lookup _route _by _dest4()

voi d
XriStaticRoutesNode::lookup_route by dest4 cb(const XrlError& xrl_error,
const IPv4 x nexthop)

{

i f (xrl_error == XrlError::OKAY()) {

printf("the nexthop is %s\n", nexthop->str().c_str());

}

}

26

7 Compiling the Source Code

If any of the Makefile.am or configure.in files are modified, then.theotstrapscript in the XORP top-
level directory must be executed first. It will run the appropriate autotimotgenerate the corresponding
Makefile.in files and theonfigurescript. After that the/configurescript must be run followed bgmake

Note that XORP assumes certain versions of the autoconf/automake/libtsidnghave been installed.
Those versions are listed in the README in the top-level XORP directoryhdfinstalled versions are
different, then the result is unredicted so it is best to install versions thaasaclose as possible to those
listed in the README.

Thebootstrapscript itself assumes that the autotools executable programs have ceneis. tag.,:

ACLOCAL=${ACLOCAL:-"aclocal110"}
AUTOCONF=${AUTOCONF:-"autoconf261"}
AUTOHEADER=${AUTOHEADER:-"autoheader261"}
AUTOMAKE=${AUTOMAKE:-"automake110"}
LIBTOOLIZE=${LIBTOOLIZE:-"libtoolize"}

If the default names don’t match, then set the following variables in the shelonment to the appro-
priate names before runninbpootstrap

e ACLOCAL
AUTOCONF

AUTOHEADER

AUTOMAKE

LIBTOOLIZE

27

8 The XLOG Logging Facility

The XORP XLOG facility is used for log messages generation, similar to sy$toglog messages may be
output to multiple output streams simultaneously. Below is a description of hovetthasog utility.

e The xlog utility assumes thaORP_MODULE_NAN#Edefined (per module). To do so, you must
have in your directory a file like “foanodule.h”, and inside it should contain something like:

#define XORP_MODULE_NAME "BGP"

This file then has to be included by each *.c and *.cc file, and MUST be thefitke included local
files.

e Before using the xlog utility, a program MUST initialize it first (think of this as #eg constructor):
int xlog_init(const char * process_name, const char * preamble_message);

Further, if a program tries to use xlog without initializing it first, the prograithexit.

e To add output streams, you MUST use one of the following (or both):

int xlog_add_output(FILE * fp);
int xlog_add_default_output(void);

e To change the verbosity of all xlog messages, use:
xlog_set_verbose(xlog_verbose t verbose_level);
where “verbosdevel” is one of the following XKLOG_VERBOSE_MAXcluded):

typedef enum {

XLOG_VERBOSE_LOW = 0, *[0 */
XLOG_VERBOSE_MEDIUM, * 1 */
XLOG_VERBOSE_HIGH, f 2 x/

XLOG_VERBOSE_MAX
} xlog_verbose_t;

Default value isXLOG_VERBOSE_LOW#ast details). Larger value for “verbosevel” adds more
details to the preamble message (e.g., file name, line number, etc, about theviplaeethe log
message was initiated).

Note that the verbosity level of message tyieOG_LEVEL_FATAL(see below) cannot be changed
and is always set to the most verbose lex¢lQG_VERBOSE_HIGH

e To change the verbosity of a particular message type, use:

28

void xlog_level_set verbose(xlog_level t log_level,
xlog_verbose t verbose_level);

where “loglevel” is one of the following XLOG_LEVEL MINandXLOG_LEVEL_ MAXxcluded):

typedef enum {

XLOG_LEVEL_MIN = 0, [+ 0 */
XLOG_LEVEL_FATAL = 0, [+ O %/
XLOG_LEVEL_ERROR, $ 1 %/
XLOG_LEVEL_WARNING, ¥ 2 %]
XLOG_LEVEL_INFO, [% 3 =/
XLOG_LEVEL_TRACE, k 4 %]

XLOG_LEVEL_MAX
} xlog_level_t;

Note that the verbosity level of message tyfdeOG_LEVEL_FATAIlcannot be changed and is always
set to the most verbose lev{l(OG_VERBOSE_HIGH

e To start the xlog utility, you MUST use:
int xlog_start(void);
e To enable or disable a particular message type, use:

int xlog_enable(xlog_level_t log_level);
int xlog_disable(xlog_level t log_level);

By default, all levels are enabled. Note tdtOG_LEVEL_FATALcannot be disabled.

e To stop the logging, use:
int xlog_stop(void);

Later you can restart it again byog_ start()

e To gracefully exit the xlog utility, use
int xlog_exit(void);

(think of this as the xlog destructor).

Listing 15 contains an example of using the XLOG facility.

29

Listing 15: An example of using the XLOG facility

i nt
main(i nt argc, char =*argv[])
{
1
/I Initialize and start xlog
1
xlog_init(argv[0], NULL);
xlog_set_verbose(XLOG_VERBOSE_LOW); /I Least verbose messages
/I Increase verbosity of the error messages
xlog_level_set_verbose(XLOG_LEVEL_ERROR, XLOG_VERBOS E_HIGH);
xlog_add_default_output();
xlog_start();

/I Do something

1

/I Gracefully stop and exit xlog
1

xlog_stop();

xlog_exit();

exit (0);

Typically, a developer would use the macros described below to print sagessdd an assert statement,
place a marker, etc. If a macro accepts a message to print, the format ofshkagees same as printf(3).
The only difference is that the xlog utility automatically adds , (i.e. end-of-line) at the end of each
string specified byormat :

e XLOG_FATAL(const char =format, ...
Write a FATAL message to the xlog output streams and abort the program.

e XLOG_ERROR(const char =format, ...)
Write an ERROR message to the xlog output streams.

e XLOG_WARNING(const char =format, ...
Write a WARNING message to the xlog output streams.

e XLOG_INFO(const char =*format, ...)
Write an INFO message to the xlog output streams.

e XLOG_TRACE(int cond_boolean, const char *format, ...)
Write a TRACE message to the xlog output stream, but ondpiifd_boolean is not 0.

e XLOG_ASSERT(assertion)
The XORP replacement for assert(3), except that it cannot be camallfiadisabled and logs error
messages through the standard xlog mechanism. 1tXaG FATAL() if the assertion fails.

e XLOG_UNREACHABLE()
A marker that can be used to indicate code that should never be executed.

30

e XLOG_UNFINISHED()
A marker that can be used to indicate code that is not yet implemented arel$tendd not be run.

31

9 Thertrmgr Template Files

TODO: add description how to write rtrmgr template files.

For the time being, the developer can check the “XORP Router Managezs3rrtrmgr)” document for
information about the template semantics, and can usedifgetc/templates/static _routes.tp
as an example.

32

A Modification History

July 19, 2004: Initial version 1.0 completed.
April 13, 2005: Updated to match XORP release 1.1: Added the XLOG lodggiility section.
March 8, 2006: Updated to match XORP release 1.2: Updated some of thiesaoapce code.

August 2, 2006: Updated to match XORP release 1.3: The XRL-relatedesawmge is modified to
match the original code. Miscellaneous cleanup.

March 20, 2007: Updated to match XORP release 1.4: Updated some oftipéessource code.
July 18, 2007: Added Section 7: Compiling the Source Code.

July 22, 2008: Updated to match XORP release 1.5: No significant changes

References

[1] XORP Design Architecture. XORP technical document. http://www.xogd.or

[2] XORP Inter-Process Communication Library. XORP technical docunietp://www.xorp.org/.

[3] XORP Libxorp Library Overview. XORP technical document. http://wwavporg/.

[4] XRL Interfaces: Specification and Tools. XORP technical documietty://www.xorp.org/.

33

