The OCaml system
release 4.07

Documentation and user’s manual

Xavier Leroy,
Damien Doligez, Alain Frisch, Jacques Garrigue, Didier Rémy and Jérome Vouillon

July 13, 2018

Copyright () 2018 Institut National de Recherche en Informatique et en Automatique

Contents

I An introduction to OCaml

1

The core language

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

Basics . ..o e
Data typeso
Functions as values e
Records and variants
Imperative features
Exceptions oL
Symbolic processing of expressionso oo
Pretty-printingo
Standalone OCaml programs Lo

The module system

2.1
2.2
2.3
24
2.5

Structures L e e e
SIgnatures oL e
Functors e
Functors and type abstraction oo Lo
Modules and separate compilationo

Objects in OCaml

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15

Classes and objects e
Immediate objects
Reference toself e
Initializers e e e
Virtual methods e
Private methods
Class interfaces e e
Inheritance e
Multiple inheritance
Parameterized classes
Polymorphic methods
USIng COErcions v v v v v v ittt e
Functional objects
Cloning objects e
Recursive classes e

11

13
13
14
15
16
20
22
24
25
26

29
29
32
33
34
37

11

3.16
3.17

Binary methods L
Friends e

Labels and variants

4.1
4.2

Labels o o
Polymorphic variants L Lo

Polymorphism and its limitations

5.1
5.2
5.3

Weak polymorphism and mutation,
Polymorphic recursion00
Higher-rank polymorphic functions

Advanced examples with classes and modules

6.1
6.2
6.3

Extended example: bank accounts L L
Simple modules as classes
The subject/observer pattern

The OCaml language

The OCaml language

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12

Lexical conventions e
Values e e e
Names o e e e e
Type expressions e
Constants e e
Patterns e
Expressions e e
Type and exception definitionso
Classes v i e e
Module types (module specifications)
Module expressions (module implementations)
Compilation units

Language extensions

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11

Integer literals for types int32, int64 and nativeint
Recursive definitions of values oL
Lazy patternso
Recursive modules
Private types. L
Local opens for patterns
Object copy short notations
Locally abstract types
First-class modules
Recovering the type of amodule L
Substituting inside a signatureo

69
69
75

79
79
84
87

89
89
95
100

105

107
107
111
113
116
119
120
124
137
140
147
151
154

8.12 Type-level module aliases
8.13 Overriding in open statements
8.14 Generalized algebraic datatypes L o
8.15 Syntax for Bigarray access e
8.16 Attributes L
8.17 Extension nodes
8.18 Quoted strings
8.19 Exception cases in pattern matching Lo oL
8.20 Extensible variant types L L L e
8.21 Generative functors L L
8.22 Extension-only syntax L L L e
8.23 Inlinerecords e
8.24 Local exceptions
8.25 Documentation commentso e
8.26 Extended indexing operators Lo e
8.27 Empty variant types oL

IIT The OCaml tools

9 Batch compilation (ocamlc)

9.1 Overview of the compiler L
9.2 Options. o
9.3 Modules and the file system oo L
9.4 COmMIMON EITOTS . + .« « v v v et e e e e e e e e e e e
9.5 Warning reference L L e

10 The toplevel
10.1 Options

system or REPL (ocaml)

10.2 Toplevel directives L e
10.3 The toplevel and the module system
10.4 Common €ITOTS . . . v v v v v vt e e e e e e e e e e e
10.5 Building custom toplevel systems: ocamlmktop
10.6 The native toplevel: ocamlnat (experimental)

11 The runtime system (ocamlrun)

11,1 Overview o o oo o e
11.2 Options o e
11.3 Dynamic loading of shared libraries
11.4 Common €ITOTS . . . v v v v v v e e e e e e e e e e e e e

12 Native-code compilation (ocamlopt)
12.1 Ovwerview of the compiler

12.2 Options

12.3 Common €ITOTS v v v v e e e e e e
12.4 Running executables produced by ocamlopt

195

197
197
198
210
210
213

217
218
225
227
228
228
229

231
231
232
234
235

12.5 Compatibility with the bytecode compiler

13 Lexer and parser generators (ocamllex, ocamlyacc)

13.1
13.2
13.3
13.4
13.5
13.6
13.7

Overview of ocamllex
Syntax of lexer definitions
Overview of ocamlyacc
Syntax of grammar definitions . . .
Options
A complete example
Common errors

14 Dependency generator (ocamldep)

14.1
14.2

Options
A typical Makefile

15 The browser/editor (ocamlbrowser)

16 The documentation generator (ocamldoc)

16.1
16.2
16.3
16.4

Usageo o .
Syntax of documentation comments
Custom generators
Adding command line options . . .

17 The debugger (ocamldebug)

17.1
17.2
17.3
17.4
17.5
17.6
17.7
17.8
17.9

Compiling for debugging
Invocation
Commands
Executing a program
Breakpoints
The call stack
Examining variable values
Controlling the debugger
Miscellaneous commands

17.10 Running the debugger under Emacs

18 Profiling (ocamlprof)

18.1
18.2
18.3
18.4

Compiling for profiling
Profiling an execution
Printing profiling information . . .
Time profiling

19 The ocamlbuild compilation manager

253
253
254
259
259
262
263
264

267
267
269

273

275
275
282
291
294

295
295
295
296
297
300
300
301
302
305
305

307
307
308
308
309

311

20 Interfacing C with OCaml
20.1 Overview and compilation information
20.2 The value type o
20.3 Representation of OCaml data types
20.4 Operations on values L L e
20.5 Living in harmony with the garbage collector
20.6 A complete example
20.7 Advanced topic: callbacks from C to OCaml
20.8 Advanced example with callbacks
20.9 Advanced topic: custom blocks
20.10 Advanced topic: Big arrays and the OCaml-C interface
20.11 Advanced topic: cheaper Ccall
20.12 Advanced topic: multithreading oL o o
20.13 Advanced topic: interfacing with Windows Unicode APIs
20.14 Building mixed C/OCaml libraries: ocamlmklib

21 Optimisation with Flambda

21.1 Overview

21.2 Command-line flags L
21.3 Inlining oL e
21.4 Specialisation
21.5 Default settings of parameterso o
21.6 Manual control of inlining and specialisation
21.7 Simplification
21.8 Other code motion transformations 0oL
21.9 Unboxing transformations oL oL
21.10 Removal of unused code and values
21.11 Other code transformations
21.12 Treatment of effects Lo
21.13 Compilation of statically-allocated modules
21.14 Inhibition of optimisation
21.15 Use of unsafe operations e

21.16 Glossary

22 Memory profiling with Spacetime

22.1 Overview

22.2 How touse it
22.3 Runtime overheado
22.4 For developers L

23 Fuzzing with afl-fuzz

23.1 Overview

23.2 Generating instrumentation L

23.3 Example

313
313
320
321
324
327
331
335
340
342
346
348
350
352
355

359
359
359
362
367
370
371
372
373
374
378
378
379
380
380
380
381

383
383
383
384
385

24 Compiler plugins
24.1 OVEIVIEW o e e e
24.2 Basicexample e e

IV The OCaml library

25 The core library
25.1 Built-in types and predefined exceptions oL
25.2 Module Pervasives : Pervasive operations.

26 The standard library
26.1 Module Arg : Parsing of command line arguments.
26.2 Module Array : Array operations. Lo Lo
26.3 Module ArrayLabels : Array operations.
26.4 Module Bigarray : Large, multi-dimensional, numerical arrays.
26.5 Module Buffer : Extensible buffers.. 0oL
26.6 Module Bytes : Byte sequence operations. L oL
26.7 Module BytesLabels : Byte sequence operations.
26.8 Module Callback : Registering OCaml values with the C runtime.
26.9 Module Char : Character operations.
26.10 Module Complex : Complex numbers.
26.11 Module Digest : MD5 message digest. oL
26.12 Module Ephemeron : Ephemerons and weak hash table
26.13 Module Filename : Operations on file names.
26.14 Module Float : Floating-point arithmetic
26.15 Module Format : Pretty-printing. o oL
26.16 Module Gc : Memory management control and statistics; finalised values.
26.17 Module Genlex : A generic lexical analyzer.
26.18 Module Hashtbl : Hash tables and hash functions.
26.19 Module Int32 : 32-bit integers.o
26.20 Module Int64 : 64-bit integers. L Lo
26.21 Module Lazy : Deferred computations.
26.22 Module Lexing : The run-time library for lexers generated by ocamllex.
26.23 Module List : List operations.
26.24 Module ListLabels : List operations.,
26.25 Module Map : Association tables over ordered types.
26.26 Module Marshal : Marshaling of data structures.
26.27 Module MoreLabels : Extra labeled libraries.,
26.28 Module Nativeint : Processor-native integers.
26.29 Module Oo : Operations on objects
26.30 Module Parsing : The run-time library for parsers generated by ocamlyacc. . . .
26.31 Module Printexc : Facilities for printing exceptions and inspecting current call

26.32 Module Printf : Formatted output functions.

389
389
389

391

393
393
396

419
421
425
430
434
453
456
464
470
470
471
473
474
482
485
489
509
515
516
526
529
532
534
536
542
548
554
957
564
567

. 967

569
574

26.33 Module Queue : First-in first-out queues. o o oo 577
26.34 Module Random : Pseudo-random number generators (PRNG). 579
26.35 Module Scanf : Formatted input functions. 581
26.36 Module Seq : Functional Iterators 591
26.37 Module Set : Sets over ordered types. oo 592
26.38 Module Sort : Sorting and merging lists. 0oL 598
26.39 Module Spacetime : Profiling of a program’s space behaviour over time. 598
26.40 Module Stack : Last-in first-out stacks. oo 600
26.41 Module StdLabels : Standard labeled libraries. 601
26.42 Module Stream : Streams and parsers.o 601
26.43 Module String : String operations. oL 603
26.44 Module Stringlabels : String operations. 609
26.45 Module Sys : System interface. L L o 614
26.46 Module Uchar : Unicode characters. 620
26.47 Module Weak : Arrays of weak pointers and hash sets of weak pointers. 622
27 The compiler front-end 627
27.1 Module Ast_mapper : The interface of a -ppx rewriter 627
27.2 Module Asttypes : Auxiliary AST types used by parsetree and typedtree. 631
27.3 Module Location : Source code locations (ranges of positions), used in parsetree. . 632
27.4 Module Longident : Long identifiers, used in parsetree.. 635
27.5 Module Parse : Entry points in the parser 635
27.6 Module Parsetree : Abstract syntax tree produced by parsing 636
277 Module Pprintast L e 644
27.8 Module Pparse : Driver for the parser, external preprocessors and ast plugin hooks 645
27.9 Module Typemod : Type-checking of the module language and typed ast plugin hooks646
27.10 Module Simplif : Lambda simplification and lambda plugin hooks 647
27.11 Module Clflags : Command line flags 648
28 The unix library: Unix system calls 655
28.1 Module Unix : Interface to the Unix system. 655
28.2 Module UnixLabels: labelized version of the interface 695
29 The num library: arbitrary-precision rational arithmetic 697
30 The str library: regular expressions and string processing 699
30.1 Module Str : Regular expressions and high-level string processing 699
31 The threads library 705
31.1 Module Thread : Lightweight threads. 706
31.2 Module Mutex : Locks for mutual exclusion. 707
31.3 Module Condition : Condition variables to synchronize between threads. 708
31.4 Module Event : First-class synchronous communication. 709
31.5 Module ThreadUnix : Thread-compatible system calls. 710

32 The graphics library

32.1 Module Graphics : Machine-independent graphics primitives.

33 The dynlink library: dynamic loading and linking of object files

33.1 Module Dynlink : Dynamic loading of object files.

34 The bigarray library

V Appendix
Index to the library

Index of keywords

713
714

723
723

727

729
731

732

Foreword

This manual documents the release 4.07 of the OCaml system. It is organized as follows.
e Part I, “An introduction to OCaml”, gives an overview of the language.
e Part II, “The OCaml language”, is the reference description of the language.
e Part III, “The OCaml tools”, documents the compilers, toplevel system, and programming
utilities.
e Part IV, “The OCaml library”, describes the modules provided in the standard library.

e Part V, “Appendix”, contains an index of all identifiers defined in the standard library, and
an index of keywords.

Conventions

OCaml runs on several operating systems. The parts of this manual that are specific to one
operating system are presented as shown below:

Unix:
This is material specific to the Unix family of operating systems, including Linux and
MacOS X.

Windows:
This is material specific to Microsoft Windows (XP, Vista, 7, 8, 10).

License

The OCaml system is copyright (©) 1996-2018 Institut National de Recherche en Informatique et
en Automatique (INRIA). INRIA holds all ownership rights to the OCaml system.

The OCaml system is open source and can be freely redistributed. See the file LICENSE in the
distribution for licensing information.

The present documentation is copyright (C) 2018 Institut National de Recherche en Informatique
et en Automatique (INRIA). The OCaml documentation and user’s manual may be reproduced and
distributed in whole or in part, subject to the following conditions:

e The copyright notice above and this permission notice must be preserved complete on all
complete or partial copies.

10 Foreword

e Any translation or derivative work of the OCaml documentation and user’s manual must be
approved by the authors in writing before distribution.

e If you distribute the OCaml documentation and user’s manual in part, instructions for ob-
taining the complete version of this manual must be included, and a means for obtaining a
complete version provided.

e Small portions may be reproduced as illustrations for reviews or quotes in other works without
this permission notice if proper citation is given.

Availability

The complete OCaml distribution can be accessed via the Web sites http://www.ocaml.org/ and
http://caml.inria.fr/. The former Web site contains a lot of additional information on OCaml.

http://www.ocaml.org/
http://caml.inria.fr/

Part 1

An introduction to OCaml

11

Chapter 1

The core language

This part of the manual is a tutorial introduction to the OCaml language. A good familiarity with
programming in a conventional languages (say, C or Java) is assumed, but no prior exposure to
functional languages is required. The present chapter introduces the core language. Chapter 2 deals
with the module system, chapter 3 with the object-oriented features, chapter 4 with extensions to
the core language (labeled arguments and polymorphic variants), and chapter 6 gives some advanced
examples.

1.1 Basics

For this overview of OCaml, we use the interactive system, which is started by running ocaml from
the Unix shell, or by launching the 0OCamlwin.exe application under Windows. This tutorial is
presented as the transcript of a session with the interactive system: lines starting with # represent
user input; the system responses are printed below, without a leading #.

Under the interactive system, the user types OCaml phrases terminated by ;; in response to
the # prompt, and the system compiles them on the fly, executes them, and prints the outcome of
evaluation. Phrases are either simple expressions, or let definitions of identifiers (either values or
functions).

142%3;;

- : int =7

let pi = 4.0 *. atan 1.0;;

val pi : float = 3.14159265358979312

let square x = X *. X;;
val square : float -> float = <fun>

square (sin pi) +. square (cos pi);;
- : float = 1.

The OCaml system computes both the value and the type for each phrase. Even function parameters
need no explicit type declaration: the system infers their types from their usage in the function.
Notice also that integers and floating-point numbers are distinct types, with distinct operators: +
and * operate on integers, but +. and *. operate on floats.

13

14

1.0 x 2;;
Error: This expression has type float but an expression was expected of type
int

Recursive functions are defined with the let rec binding:

let rec fib n =
if n < 2 then n else fib (n-1) + fib (n-2);;
val fib : int -> int = <fun>

fib 10;;
- : int = 55

1.2 Data types

In addition to integers and floating-point numbers, OCaml offers the usual basic data types:
booleans, characters, and immutable character strings.

(1 < 2) = false;;
- : bool = false

+H+

fals;
- : char = 'a’'

"Hello world";;
- : string = "Hello world"

Predefined data structures include tuples, arrays, and lists. There are also general mechanisms
for defining your own data structures, such as records and variants, which will be covered in more
detail later; for now, we concentrate on lists. Lists are either given in extension as a bracketed
list of semicolon-separated elements, or built from the empty list [] (pronounce “nil”) by adding
elements in front using the :: (“cons”) operator.

let 1 = ["is"; "a"; "tale"; "told"; "etc."];;

val 1 : string list = ["is"; "a"; "tale"; "told"; "etc."]

"Life" :: 1;;

- : string list = ["Life"; "is"; "a"; "tale"; "told"; "etc."]

As with all other OCaml data structures, lists do not need to be explicitly allocated and deallocated
from memory: all memory management is entirely automatic in OCaml. Similarly, there is no
explicit handling of pointers: the OCaml compiler silently introduces pointers where necessary.

As with most OCaml data structures, inspecting and destructuring lists is performed by pattern-
matching. List patterns have exactly the same form as list expressions, with identifiers representing
unspecified parts of the list. As an example, here is insertion sort on a list:

let rec sort 1lst =

match 1st with

1 ->1

| head :: tail -> insert head (sort tail)
and insert elt 1lst =

Chapter 1. The core language 15

match 1st with

[1 -> [elt]

| head :: tail -> if elt <= head then elt :: 1lst else head :: insert elt tail
55

val sort : 'a list -> 'a list = <fun>

val insert : 'a -> 'a list -> 'a list = <fun>

sort 1;;

- : string list = ["a"; "etc."; "is"; "tale"; "told"]

The type inferred for sort, 'a list -> 'a 1list, means that sort can actually apply to lists
of any type, and returns a list of the same type. The type 'a is a type variable, and stands for
any given type. The reason why sort can apply to lists of any type is that the comparisons (=,
<=, etc.) are polymorphic in OCaml: they operate between any two values of the same type. This
makes sort itself polymorphic over all list types.

sort [6;2;5;3];;
- : int list = [2; 3; 5; 6]
sort [3.14; 2.718];;

: float list = [2.718; 3.14]

The sort function above does not modify its input list: it builds and returns a new list con-
taining the same elements as the input list, in ascending order. There is actually no way in OCaml
to modify a list in-place once it is built: we say that lists are immutable data structures. Most
OCaml data structures are immutable, but a few (most notably arrays) are mutable, meaning that
they can be modified in-place at any time.

The OCaml notation for the type of a function with multiple arguments is
argl_type -> arg2_type -> ... —> return_type. For example, the type inferred for insert,
'a -> 'a list -> 'a list, means that insert takes two arguments, an element of any type 'a
and a list with elements of the same type 'a and returns a list of the same type.

1.3 Functions as values

OCaml is a functional language: functions in the full mathematical sense are supported and can
be passed around freely just as any other piece of data. For instance, here is a deriv function that
takes any float function as argument and returns an approximation of its derivative function:

let deriv f dx = function x -> (f (x +. dx) -. f x) /. dx;;
val deriv : (float -> float) -> float -> float -> float = <fun>

let sin' = deriv sin 1le-6;;

val sin' : float -> float = <fun>

sin' pi;;

- : float = -1.00000000013961143

Even function composition is definable:

16

let compose f g = function x -> £ (g x);;
val compose : ('a -> 'b) -> ('c -> 'a) -> 'c -> 'b = <fun>

let cos2 = compose square cos;;
val cos2 : float -> float = <fun>

Functions that take other functions as arguments are called “functionals”, or “higher-order
functions”. Functionals are especially useful to provide iterators or similar generic operations over
a data structure. For instance, the standard OCaml library provides a List.map functional that
applies a given function to each element of a list, and returns the list of the results:

List.map (function n ->n * 2 + 1) [0;1;2;3;4];;
- : int list = [1; 3; 5; 7; 9]

This functional, along with a number of other list and array functionals, is predefined because it is
often useful, but there is nothing magic with it: it can easily be defined as follows.

let recmap £ 1 =

match 1 with

-1

| hd :: t1 -> f hd :: map f tl;;

val map : ('a -> 'b) -> 'a list -> 'b list = <fun>

1.4 Records and variants

User-defined data structures include records and variants. Both are defined with the type declara-
tion. Here, we declare a record type to represent rational numbers.

type ratio = {num: int; denom: int};;
type ratio = { num : int; denom : int; }

let add_ratio rl1 r2 =

{num = ri1.num * r2.denom + r2.num * rl.denom;

denom = rl.denom * r2.denom};;
val add_ratio : ratio -> ratio -> ratio = <fun>

add_ratio {num=1; denom=3} {num=2; denom=5};;
- : ratio = {num = 11; denom = 15}

Record fields can also be accessed through pattern-matching;:

let integer_part r =

match r with

{num=num; denom=denom} -> num / denom;;
val integer_part : ratio -> int = <fun>

Since there is only one case in this pattern matching, it is safe to expand directly the argument r
in a record pattern:

let integer_part {num=num; denom=denom} = num / denom;;
val integer_part : ratio -> int = <fun>

Chapter 1. The core language 17

Unneeded fields can be omitted:

let get_denom {denom=denom} = denom;;
val get_denom : ratio -> int = <fun>

Optionally, missing fields can be made explicit by ending the list of fields with a trailing wildcard

let get_num {num=num; _ } = num;;
val get_num : ratio -> int = <fun>

When both sides of the = sign are the same, it is possible to avoid repeating the field name by
eliding the =field part:

let integer_part {num; denom} = num / denom;;
val integer_part : ratio -> int = <fun>

This short notation for fields also works when constructing records:

let ratio num denom = {num; denom};;
val ratio : int -> int -> ratio = <fun>

At last, it is possible to update few fields of a record at once:

#

let integer_product integer ratio = { ratio with num = integer * ratio.num 1};;
val integer_product : int -> ratio -> ratio = <fun>

With this functional update notation, the record on the left-hand side of with is copied except for
the fields on the right-hand side which are updated.

The declaration of a variant type lists all possible forms for values of that type. Each case is
identified by a name, called a constructor, which serves both for constructing values of the variant
type and inspecting them by pattern-matching. Constructor names are capitalized to distinguish
them from variable names (which must start with a lowercase letter). For instance, here is a variant
type for doing mixed arithmetic (integers and floats):

type number = Int of int | Float of float | Error;;
type number = Int of int | Float of float | Error

This declaration expresses that a value of type number is either an integer, a floating-point number,
or the constant Error representing the result of an invalid operation (e.g. a division by zero).
Enumerated types are a special case of variant types, where all alternatives are constants:

type sign = Positive | Negative;;
type sign = Positive | Negative

let sign_int n = if n >= 0 then Positive else Negative;;
val sign_int : int -> sign = <fun>

To define arithmetic operations for the number type, we use pattern-matching on the two num-
bers involved:

18

let add_num nl n2 =
match (nl, n2) with

(Int i1, Int i2) —>

(* Check for overflow of integer addition *)

if sign_int il = sign_int i2 && sign_int (il + i2) <> sign_int il
then Float(float il +. float i2)

else Int(il + i2)

| (Int i1, Float f2) -> Float(float il +. f2)

| (Float f1, Int i2) -> Float(f1 +. float i2)

| (Float f1, Float f2) -> Float(f1l +. f2)

| (Error, _) —> Error

|

(_, Error) -> Error;;
val add_num : number -> number -> number = <fun>

add_num (Int 123) (Float 3.14159);;
- : number = Float 126.14159

Another interesting example of variant type is the built-in 'a option type which represents
either a value of type 'a or an absence of value:

type 'a option = Some of 'a | None;;
type 'a option = Some of 'a | None

This type is particularly useful when defining function that can fail in common situations, for
instance

let safe_square_root x = if x > 0. then Some(sqrt x) else None;;
val safe_square_root : float -> float option = <fun>

The most common usage of variant types is to describe recursive data structures. Consider for
example the type of binary trees:

type 'a btree = Empty | Node of 'a * 'a btree * 'a btree;;
type 'a btree = Empty | Node of 'a * 'a btree * 'a btree

This definition reads as follows: a binary tree containing values of type 'a (an arbitrary type) is
either empty, or is a node containing one value of type 'a and two subtrees also containing values
of type 'a, that is, two 'a btree.

Operations on binary trees are naturally expressed as recursive functions following the same
structure as the type definition itself. For instance, here are functions performing lookup and
insertion in ordered binary trees (elements increase from left to right):

let rec member x btree =
match btree with
Empty -> false
| Node(y, left, right) ->
if x = y then true else

if x < y then member x left else member x right;;
val member : 'a -> 'a btree -> bool = <fun>

#
#
#
#
#
#

Chapter 1. The core language 19

let rec insert x btree =
match btree with
Empty -> Node(x, Empty, Empty)
| Node(y, left, right) ->
if x <= y then Node(y, insert x left, right)

else Node(y, left, insert x right);;
a -> 'a btree -> 'a btree = <fun>

#
#
#
#
#
#

val insert : '

1.4.1 Record and variant disambiguation

(This subsection can be skipped on the first reading)
Astute readers may have wondered what happens when two or more record fields or constructors
share the same name

type first_record = { x:int; y:int; z:int }
type middle_record = { x:int; z:int }
type last_record { x:int };;

type first_variant = A | B | C
type last_variant = A;;

H OH O H H H

The answer is that when confronted with multiple options, OCaml tries to use locally available
information to disambiguate between the various fields and constructors. First, if the type of the
record or variant is known, OCaml can pick unambiguously the corresponding field or constructor.
For instance:

let look_at_x_then_z (r:first_record) =

let x = r.x in

X +r.z;;

val look_at_x_then_z : first_record -> int = <fun>

let permute (x:first_variant) = match x with

| A -> (B:first_variant)
| B> A
| C -> C;;

val permute : first_variant -> first_variant = <fun>

type wrapped = First of first_record

let £ (First r) =r, r.x;;

type wrapped = First of first_record

val f : wrapped -> first_record * int = <fun>

In the first example, (r:first_record) is an explicit annotation telling OCaml that the type
of r is first_record. With this annotation, Ocaml knows that r.x refers to the x field of the
first record type. Similarly, the type annotation in the second example makes it clear to OCaml
that the constructors A, B and C come from the first variant type. Contrarily, in the last example,
OCaml has inferred by itself that the type of r can only be first_record and there are no needs
for explicit type annotations.

20

Those explicit type annotations can in fact be used anywhere. Most of the time they are
unnecessary, but they are useful to guide disambiguation, to debug unexpected type errors, or
combined with some of the more advanced features of OCaml described in later chapters.

Secondly, for records, OCaml can also deduce the right record type by looking at the whole set
of fields used in a expression or pattern:

let project_and_rotate {x;y; _ } ={x=-y;, y=x; z =0} ;;
val project_and_rotate : first_record -> first_record = <fun>

Since the fields x and y can only appear simultaneously in the first record type, OCaml infers that
the type of project_and_rotate is first_record -> first_record.

In last resort, if there is not enough information to disambiguate between different fields or
constructors, Ocaml picks the last defined type amongst all locally valid choices:

let look_at_xz {x;z} = x;;
val look_at_xz : middle_record -> int = <fun>

Here, OCaml has inferred that the possible choices for the type of {x;z} are first_record
and middle_record, since the type last_record has no field z. Ocaml then picks the type
middle_record as the last defined type between the two possibilities.

Beware that this last resort disambiguation is local: once Ocaml has chosen a disambiguation,
it sticks to this choice, even if it leads to an ulterior type error:

let look_at_x_then_y r =
let x = r.x in (* Ocaml deduces [r: last_record] x*)
X+ r.y;;
Error: This expression has type last_record
The field y does not belong to type last_record

let is_a_or_b x = match x with

| A -> true (* OCaml infers [x: last_variant] *)

| B -> true;;

Error: This variant pattern is expected to have type last_variant
The constructor B does not belong to type last_variant

Moreover, being the last defined type is a quite unstable position that may change surrepti-
tiously after adding or moving around a type definition, or after opening a module (see chapter
2). Consequently, adding explicit type annotations to guide disambiguation is more robust than
relying on the last defined type disambiguation.

1.5 Imperative features

Though all examples so far were written in purely applicative style, OCaml is also equipped with
full imperative features. This includes the usual while and for loops, as well as mutable data
structures such as arrays. Arrays are either created by listing semicolon-separated element values
between [| and |] brackets, or allocated and initialized with the Array.make function, then filled
up later by assignments. For instance, the function below sums two vectors (represented as float
arrays) componentwise.

Chapter 1. The core language 21

let add_vect vl v2 =
let len

#

min (Array.length v1) (Array.length v2) in
let res = Array.make len 0.0 in

for i = 0 to len - 1 do
#

#

#

res. (i) <- vi.(1) +. v2.(1)
done;
res;;
val add_vect : float array -> float array —-> float array = <fun>

add_vect [| 1.0; 2.0 |1 [l 3.0; 4.0 |];;
- : float array = [|4.; 6.]]

Record fields can also be modified by assignment, provided they are declared mutable in the
definition of the record type:

type mutable_point = { mutable x: float; mutable y: float };;
type mutable_point = { mutable x : float; mutable y : float; }

let translate p dx dy =
p.x <-p.x +. dx; p.y <- p.y +. dy;;
val translate : mutable_point -> float -> float -> unit = <fun>

let mypoint = { x = 0.0; y = 0.0 };;
val mypoint : mutable_point = {x = 0.; y = 0.}

translate mypoint 1.0 2.0;;

- : unit = ()

mypoint;;

- : mutable_point = {x = 1.; y = 2.}

OCaml has no built-in notion of variable — identifiers whose current value can be changed
by assignment. (The let binding is not an assignment, it introduces a new identifier with a new
scope.) However, the standard library provides references, which are mutable indirection cells, with
operators ! to fetch the current contents of the reference and := to assign the contents. Variables
can then be emulated by let-binding a reference. For instance, here is an in-place insertion sort
over arrays:

let insertion_sort a =

for i = 1 to Array.length a - 1 do

let val_i = a.(i) in

let j = ref i in

while !'j > 0 && val_i < a.(!j - 1) do
a.(1j) <= a.('j - 1;

jo=13j-1

done;

a.(!'j) <= val_i

done; ;

val insertion_sort : 'a array -> unit = <fun>

22

References are also useful to write functions that maintain a current state between two calls to
the function. For instance, the following pseudo-random number generator keeps the last returned
number in a reference:

let current_rand = ref O;;
val current_rand : int ref = {contents = O}

let random () =
current_rand := !current_rand * 25713 + 1345;

lcurrent_rand;;
val random : unit -> int = <fun>

Again, there is nothing magical with references: they are implemented as a single-field mutable
record, as follows.

type 'a ref = { mutable contents: 'a };;
type 'a ref = { mutable contents : 'a; }

let (!) r = r.contents;;

val (!) : 'a ref -> 'a = <fun>
let (:=) r newval = r.contents <- newval;;
val (:=) : 'a ref -> 'a -> unit = <fun>

In some special cases, you may need to store a polymorphic function in a data structure, keeping
its polymorphism. Doing this requires user-provided type annotations, since polymorphism is only
introduced automatically for global definitions. However, you can explicitly give polymorphic types
to record fields.

type idref = { mutable id: 'a. 'a -> 'a };;
type idref = { mutable id : 'a. 'a -> 'a; }

let r = {id = fun x -> x};;
val r : idref = {id = <fun>}

let g s = (s.id 1, s.id true);;
val g : idref -> int * bool = <fun>

r.id <- (fun x -> print_string "called id\n"; x);;
- : unit = ()

#gr;;

called id

called id
- : int * bool = (1, true)

1.6 Exceptions

OCaml provides exceptions for signalling and handling exceptional conditions. Exceptions can also
be used as a general-purpose non-local control structure, although this should not be overused since
it can make the code harder to understand. Exceptions are declared with the exception construct,
and signalled with the raise operator. For instance, the function below for taking the head of a
list uses an exception to signal the case where an empty list is given.

Chapter 1. The core language 23

exception Empty_list;;
exception Empty_list

let head 1 =
match 1 with

[] -> raise Empty_list
| hd :: t1 -> hd;;

val head : 'a list -> 'a = <fun>
head [1;2];;

- : int =1

head [1;;

Exception: Empty_list.

Exceptions are used throughout the standard library to signal cases where the library functions
cannot complete normally. For instance, the List.assoc function, which returns the data associ-
ated with a given key in a list of (key, data) pairs, raises the predefined exception Not_found when
the key does not appear in the list:

List.assoc 1 [(0, "zero"); (1, "omne")];;
- : string = "one"

List.assoc 2 [(0, "zero"); (1, "one")];;
Exception: Not_found.

Exceptions can be trapped with the try...with construct:

let name_of_binary_digit digit =

try

List.assoc digit [0, "zero"; 1, "one"]
with Not_found ->

"not a binary digit";;

val name_of_binary_digit : int -> string = <fun>

name_of_binary_digit O;;
- : string = "zero"

name_of_binary_digit (-1);;
- : string = "not a binary digit"

The with part does pattern matching on the exception value with the same syntax and behavior
as match. Thus, several exceptions can be caught by one try...with construct. Also, finalization
can be performed by trapping all exceptions, performing the finalization, then re-raising the excep-
tion:

let temporarily_set_reference ref newval funct =
let oldval = !ref in

try

ref := newval;

let res = funct () in

ref := oldval;

res

with x ->

ref := oldval;

raise Xx;;

val temporarily_set_reference : 'a ref -> 'a -> (unit -> 'b) -> 'b = <fun>

1.7 Symbolic processing of expressions

We finish this introduction with a more complete example representative of the use of OCaml
for symbolic processing: formal manipulations of arithmetic expressions containing variables. The
following variant type describes the expressions we shall manipulate:

type expression =

Const of float

| Var of string

| Sum of expression * expression (x el + e2 *)
| Diff of expression * expression (* el - e2 x)
| Prod of expression * expression (x el * e2 *)
| Quot of expression * expression (x el / e2 %)
%5,

type expression =
Const of float
| Var of string

| Sum of expression * expression

| Diff of expression * expression

| Prod of expression * expression

| Quot of expression * expression

We first define a function to evaluate an expression given an environment that maps variable
names to their values. For simplicity, the environment is represented as an association list.

exception Unbound_variable of string;;
exception Unbound_variable of string

let rec eval env exp =
match exp with
Const ¢ -> ¢
| Var v ->
(try List.assoc v env with Not_found -> raise (Unbound_variable v))
Sum(f, g) -> eval env f +. eval env g
Diff(f, g) -> eval env f -. eval env g
Prod(f, g) -> eval env f *. eval env g

Quot(f, g) -> eval env f /. eval env g;;
val eval : (string * float) list -> expression -> float = <fun>

eval [("x", 1.0); ("y", 3.14)] (Prod(Sum(Var "x", Const 2.0), Var "y"));;
- : float = 9.42

H OH HF H O H H R

Now for a real symbolic processing, we define the derivative of an expression with respect to a
variable dv:

Chapter 1. The core language 25

let rec deriv exp dv =

match exp with

Const ¢ -> Const 0.0

| Var v => if v = dv then Const 1.0 else Const 0.0

| Sum(f, g) -> Sum(deriv f dv, deriv g dv)

| Diff(f, g) -> Diff(deriv f dv, deriv g dv)

| Prod(f, g) -> Sum(Prod(f, deriv g dv), Prod(deriv f dv, g))

| Quot(f, g) -> Quot(Diff(Prod(deriv f dv, g), Prod(f, deriv g dv)),
Prod(g, g))

#55

val deriv : expression -> string -> expression = <fun>

deriv (Quot(Const 1.0, Var "x")) "x";;

- ! expression =

Quot (Diff (Prod (Comnst 0., Var "x"), Prod (Const 1., Comst 1.)),
Prod (Var "x", Var "x"))

1.8 Pretty-printing

As shown in the examples above, the internal representation (also called abstract syntaz) of expres-
sions quickly becomes hard to read and write as the expressions get larger. We need a printer and
a parser to go back and forth between the abstract syntax and the concrete syntax, which in the
case of expressions is the familiar algebraic notation (e.g. 2*x+1).

For the printing function, we take into account the usual precedence rules (i.e. * binds tighter
than +) to avoid printing unnecessary parentheses. To this end, we maintain the current operator
precedence and print parentheses around an operator only if its precedence is less than the current
precedence

let print_expr exp =

(* Local function definitions *)

let open_paren prec op_prec =
if prec > op_prec then print_string "(" in
let close_paren prec op_prec =
if prec > op_prec then print_string ")" in
let rec print prec exp = (x prec is the current precedence *)
match exp with

Const c¢ -> print_float c
| Var v -> print_string v
| Sum(f, g) —>

open_paren prec O;

print O f; print_string " + "; print O g;
close_paren prec O

| Diff(f, g) ->

open_paren prec O;

print O f; print_string " - "; print 1 g;
close_paren prec O

[\)
D

| Prod(f, g) —>
open_paren prec 2;
print 2 f; print_string " * "; print 2 g;
close_paren prec 2
| Quot(f, g —->
open_paren prec 2;
print 2 f; print_string " / "; print 3 g;
close_paren prec 2
in print O exp;;
val print_expr : expression —> unit = <fun>

H OHF H OH HF OH OH H H

let e = Sum(Prod(Const 2.0, Var "x"), Const 1.0);;
val e : expression = Sum (Prod (Const 2., Var "x"), Const 1.)

print_expr e; print_newline ();;

2. *x x + 1.

- : unit = ()

print_expr (deriv e "x"); print_newline ();;
2. 1. + 0. *xx + 0.

- : unit = ()

1.9 Standalone OCaml programs

All examples given so far were executed under the interactive system. OCaml code can also be com-
piled separately and executed non-interactively using the batch compilers ocamlc and ocamlopt.
The source code must be put in a file with extension .ml. It consists of a sequence of phrases, which
will be evaluated at runtime in their order of appearance in the source file. Unlike in interactive
mode, types and values are not printed automatically; the program must call printing functions
explicitly to produce some output. The ;; used in the interactive examples is not required in
source files created for use with OCaml compilers, but can be helpful to mark the end of a top-level
expression unambiguously even when there are syntax errors. Here is a sample standalone program
to print Fibonacci numbers:

(x File fib.ml *)
let rec fib n =
if n < 2 then 1 else fib (n-1) + fib (n-2);;
let main () =
let arg = int_of_string Sys.argv.(1) in
print_int (£fib arg);
print_newline ();
exit 0;;
main () ;;
Sys.argv is an array of strings containing the command-line parameters. Sys.argv. (1) is thus

the first command-line parameter. The program above is compiled and executed with the following
shell commands:

Chapter 1. The core language 27

$ ocamlc -o fib fib.ml
$./fib 10

89

$./fib 20

10946

More complex standalone OCaml programs are typically composed of multiple source files, and
can link with precompiled libraries. Chapters 9 and 12 explain how to use the batch compilers
ocamlc and ocamlopt. Recompilation of multi-file OCaml projects can be automated using third-
party build systems, such as the ocamlbuild compilation manager.

https://github.com/ocaml/ocamlbuild/

28

Chapter 2

The module system

This chapter introduces the module system of OCaml.

2.1 Structures

A primary motivation for modules is to package together related definitions (such as the definitions
of a data type and associated operations over that type) and enforce a consistent naming scheme
for these definitions. This avoids running out of names or accidentally confusing names. Such a
package is called a structure and is introduced by the struct...end construct, which contains an
arbitrary sequence of definitions. The structure is usually given a name with the module binding.
Here is for instance a structure packaging together a type of priority queues and their operations:

module PrioQueue =

if lprio <= rprio
then Node(lprio, lelt, remove_top left, right)

struct

type priority = int

type 'a queue = Empty | Node of priority * 'a * 'a queue * 'a queue
let empty = Empty

let rec insert queue prio elt =

match queue with

Empty -> Node(prio, elt, Empty, Empty)

| Node(p, e, left, right) ->

if prio <=p

then Node(prio, elt, insert right p e, left)

else Node(p, e, insert right prio elt, left)

exception Queue_is_empty

let rec remove_top = function

Empty -> raise Queue_is_empty

| Node(prio, elt, left, Empty) -> left

| Node(prio, elt, Empty, right) -> right

| Node(prio, elt, (Node(lprio, lelt, _, _) as left),

(Node(rprio, relt, _, _) as right)) ->
#

#

29

else Node(rprio, relt, left, remove_top right)
let extract = function
Empty -> raise Queue_is_empty
| Node(prio, elt, _, _) as queue -> (prio, elt, remove_top queue)
end;;
module PrioQueue :
sig

type priority = int
type 'a queue = Empty | Node of priority * 'a * 'a queue * 'a queue

val empty : 'a queue

val insert : 'a queue -> priority -> 'a -> 'a queue

exception Queue_is_empty

val remove_top : 'a queue -> 'a queue

val extract : 'a queue -> priority * 'a * 'a queue
end

Outside the structure, its components can be referred to using the “dot notation”, that is, identifiers
qualified by a structure name. For instance, PrioQueue.insert is the function insert defined
inside the structure PrioQueue and PrioQueue.queue is the type queue defined in PrioQueue.

PrioQueue.insert PrioQueue.empty 1 "hello";;
- : string Prio(ueue.queue =
PrioQueue.Node (1, "hello", PrioQueue.Empty, PrioQueue.Empty)

Another possibility is to open the module, which brings all identifiers defined inside the module
in the scope of the current structure.

open PrioQueue;;

insert empty 1 "hello";;
- : string PrioQueue.queue = Node (1, "hello", Empty, Empty)

Opening a module enables lighter access to its components, at the cost of making it harder to
identify in which module a identifier has been defined. In particular, opened modules can shadow
identifiers present in the current scope, potentially leading to confusing errors:

let empty = []
open PrioQueue;;
val empty : 'a list = []

let x =1 :: empty ;;
Error: This expression has type 'a Prio(lueue.queue
but an expression was expected of type int list

A partial solution to this conundrum is to open modules locally, making the components of
the module available only in the concerned expression. This can also make the code easier to read
— the open statement is closer to where it is used— and to refactor — the code fragment is more
self-contained. T'wo constructions are available for this purpose:

let open PrioQueue in
insert empty 1 "hello";;
- : string PrioQueue.queue = Node (1, "hello", Empty, Empty)

Chapter 2. The module system 31

and

PrioQueue. (insert empty 1 "hello");;
- : string PrioQueue.queue = Node (1, "hello", Empty, Empty)

In the second form, when the body of a local open is itself delimited by parentheses, braces or
bracket, the parentheses of the local open can be omitted. For instance,

PrioQueue. [empty] = PrioQueue. ([empty]l);;
- : bool = true

PrioQueue. [|emptyl] = PrioQueue. ([|emptyl]l);;
- : bool = true

PrioQueue.{ contents = empty } = PrioQueue.({ contents = empty });;
- : bool = true

becomes

PrioQueue.[insert empty 1 "hello"];;
- : string PrioQueue.queue list = [Node (1, "hello", Empty, Empty)]

It is also possible to copy the components of a module inside another module by using an
include statement. This can be particularly useful to extend existing modules. As an illustration,
we could add functions that returns an optional value rather than an exception when the priority
queue is empty.

module PrioQueueOpt =
struct
include PrioQueue
let remove_top_opt x =
try Some(remove_top x) with Queue_is_empty -> None
let extract_opt x =
try Some(extract x) with Queue_is_empty -> None
end;;
module PrioQueueOpt :
sig
type priority
type 'a queue
'a Prio(Jueue.queue =

int

Empty

| Node of priority * 'a * 'a queue * 'a queue
val empty : 'a queue
val insert : 'a queue -> priority -> 'a -> 'a queue
exception Queue_is_empty
val remove_top : 'a queue -> 'a queue
val extract : 'a queue -> priority * 'a * 'a queue
val remove_top_opt : 'a queue -> 'a queue option
val extract_opt : 'a queue -> (priority * 'a * 'a queue) option

end

32

2.2 Signatures

Signatures are interfaces for structures. A signature specifies which components of a structure
are accessible from the outside, and with which type. It can be used to hide some components
of a structure (e.g. local function definitions) or export some components with a restricted type.
For instance, the signature below specifies the three priority queue operations empty, insert and
extract, but not the auxiliary function remove_top. Similarly, it makes the queue type abstract
(by not providing its actual representation as a concrete type).

module type PRIOQUEUE =

sig
type priority = int (* still concrete *)
type 'a queue (* now abstract *)
val empty : 'a queue
val insert : 'a queue -> int -> 'a -> 'a queue
val extract : 'a queue -> int * 'a * 'a queue
exception Queue_is_empty
end;;
module type PRIOQUEUE =
sig

type priority = int
type 'a queue

val empty : 'a queue
val insert : 'a queue -> int -> 'a -> 'a queue
val extract : 'a queue -> int * 'a * 'a queue
exception (ueue_is_empty

end

Restricting the PrioQueue structure by this signature results in another view of the PrioQueue
structure where the remove_top function is not accessible and the actual representation of priority
queues is hidden:

module AbstractPrioQueue = (PrioQueue : PRIOQUEUE);;
module AbstractPrioQueue : PRIOQUEUE

AbstractPrioQueue.remove_top ;;
Error: Unbound value AbstractPrioQueue.remove_top

AbstractPrioQueue.insert AbstractPrioQueue.empty 1 "hello";;
- : string AbstractPrioQueue.queue = <abstr>

The restriction can also be performed during the definition of the structure, as in
module PrioQueue = (struct ... end : PRIOQUEUE);;

An alternate syntax is provided for the above:
module PrioQueue : PRIOQUEUE = struct ... end;;

Like for modules, it is possible to include a signature to copy its components inside the current
signature. For instance, we can extend the PRIOQUEUE signature with the extract_opt function:

Chapter 2. The module system 33

module type PRIOQUEUE_WITH_OPT =

sig
include PRIOQUEUE
val extract_opt : 'a queue -> (int * 'a * 'a queue) option
end;;
module type PRIOQUEUE_WITH_OPT =
sig

type priority = int
type 'a queue

val empty : 'a queue

val insert : 'a queue -> int -> 'a -> 'a queue

val extract : 'a queue -> int * 'a * 'a queue

exception (ueue_is_empty

val extract_opt : 'a queue -> (int * 'a * 'a queue) option
end

2.3 Functors

Functors are “functions” from modules to modules. Functors let you create parameterized modules
and then provide other modules as parameter(s) to get a specific implementation. For instance,
a Set module implementing sets as sorted lists could be parameterized to work with any module
that provides an element type and a comparison function compare (such as OrderedString):

type comparison = Less | Equal | Greater;;
type comparison = Less | Equal | Greater

module type ORDERED_TYPE =

sig

type t

val compare: t -> t -> comparison
end;;

module type ORDERED_TYPE = sig type t val compare : t -> t -> comparison end

module Set =
functor (Elt: ORDERED_TYPE) ->

| Greater -> hd :: add x tl
let rec member x s =

struct

type element = Elt.t

type set = element list

let empty = []

let rec add x s =

match s with

0 -> [x]

| hd::tl ->

match Elt.compare x hd with

Equal -> s (* x is already in s *)
| Less ->x :: s (* x is smaller than all elements of s *)
#

#

w
=~

match s with
[1 -> false
| hd::t1 ->
match Elt.compare x hd with
Equal -> true (* x belongs to s *)
| Less -> false (* x is smaller than all elements of s *)
| Greater -> member x tl
end;;
module Set :

functor (Elt : ORDERED_TYPE) ->

sig

type element = Elt.t

type set = element list

val empty : 'a list

val add : Elt.t -> EIt.t list -> Elt.t list

val member : Elt.t -> EIt.t list -> bool
end

By applying the Set functor to a structure implementing an ordered type, we obtain set operations
for this type:

module OrderedString =
struct

type t = string
let compare x y = if x = y then Equal else if x < y then Less else Greater
end;;
module OrderedString :
sig type t = string val compare : 'a -> 'a -> comparison end

module StringSet = Set(OrderedString);;
module StringSet :
sig
type element = OrderedString.t
type set = element list
val empty : 'a list
val add : OrderedString.t -> OrderedString.t list -> OrderedString.t list
val member : OrderedString.t -> OrderedString.t list -> bool
end

StringSet.member "bar" (StringSet.add "foo" StringSet.empty);;
- : bool = false

2.4 Functors and type abstraction

As in the PrioQueue example, it would be good style to hide the actual implementation of the
type set, so that users of the structure will not rely on sets being lists, and we can switch later to
another, more efficient representation of sets without breaking their code. This can be achieved by
restricting Set by a suitable functor signature:

Chapter 2. The module system 35

module type SETFUNCTOR =

functor (Elt: ORDERED_TYPE) ->

sig

type element = Elt.t (* concrete *)
type set (* abstract *)
val empty : set

val add : element -> set -> set

val member : element -> set -> bool

end;;

module type SETFUNCTOR =
functor (E1t : ORDERED_TYPE) ->

sig
type element = Elt.t
type set
val empty : set
val add : element -> set -> set
val member : element -> set -> bool

end

module AbstractSet = (Set : SETFUNCTOR);;
module AbstractSet : SETFUNCTOR

module AbstractStringSet = AbstractSet(OrderedString);;
module AbstractStringSet :
sig
type element = OrderedString.t
type set = AbstractSet (OrderedString).set
val empty : set
val add : element -> set -> set
val member : element -> set —> bool
end

AbstractStringSet.add '"gee" AbstractStringSet.empty;;
- : AbstractStringSet.set = <abstr>

In an attempt to write the type constraint above more elegantly, one may wish to name the
signature of the structure returned by the functor, then use that signature in the constraint:

module type SET =
sig
type element
type set
val empty : set
val add : element -> set -> set
val member : element -> set -> bool
end;;
module type SET =
sig
type element
type set
val empty : set

H OH HF H H H

36

val add : element -> set -> set
val member : element -> set -> bool
end

module WrongSet = (Set : functor(Elt: ORDERED_TYPE) -> SET);;
module WrongSet : functor (E1t : ORDERED_TYPE) -> SET

module WrongStringSet = WrongSet(OrderedString);;
module WrongStringSet :
sig
type element = WrongSet (OrderedString).element
type set = WrongSet (OrderedString).set
val empty : set
val add : element —-> set -> set
val member : element -> set -> bool
end

WrongStringSet.add "gee" WrongStringSet.empty ;;
Error: This expression has type string but an expression was expected of type
WrongStringSet.element = WrongSet (OrderedString).element

The problem here is that SET specifies the type element abstractly, so that the type equality
between element in the result of the functor and t in its argument is forgotten. Consequently,
WrongStringSet.element is not the same type as string, and the operations of WrongStringSet
cannot be applied to strings. As demonstrated above, it is important that the type element in
the signature SET be declared equal to E1t.t; unfortunately, this is impossible above since SET
is defined in a context where E1t does not exist. To overcome this difficulty, OCaml provides a
with type construct over signatures that allows enriching a signature with extra type equalities:

module AbstractSet2 =

(Set : functor(Elt: ORDERED_TYPE) -> (SET with type element = Elt.t));;
module AbstractSet2 :
functor (E1t : ORDERED_TYPE) ->
sig
type element = Elt.t
type set
val empty : set
val add : element -> set -> set
val member : element -> set -> bool
end

As in the case of simple structures, an alternate syntax is provided for defining functors and
restricting their result:

module AbstractSet2(Elt: ORDERED_TYPE) : (SET with type element = Elt.t) =
struct ... end;;

Abstracting a type component in a functor result is a powerful technique that provides a high
degree of type safety, as we now illustrate. Consider an ordering over character strings that is
different from the standard ordering implemented in the OrderedString structure. For instance,
we compare strings without distinguishing upper and lower case.

Chapter 2. The module system 37

module NoCaseString =

struct

type t = string

let compare sl s2 =
#

OrderedString.compare (String.lowercase_ascii s1) (String.lowercase_ascii s2)
end;;
module NoCaseString :

sig type t = string val compare : string -> string —-> comparison end

module NoCaseStringSet = AbstractSet(NoCaseString);;
module NoCaseStringSet :
sig
type element = NoCaseString.t
type set = AbstractSet(NoCaseString).set
val empty : set
val add : element -> set -> set
val member : element -> set -> bool
end

NoCaseStringSet.add "FOO" AbstractStringSet.empty ;;
Error: This expression has type
AbstractStringSet.set = AbstractSet (OrderedString).set
but an expression was expected of type
NoCaseStringSet.set = AbstractSet(NoCaseString).set

Note that the two types AbstractStringSet.set and NoCaseStringSet.set are not compatible,
and values of these two types do not match. This is the correct behavior: even though both
set types contain elements of the same type (strings), they are built upon different orderings
of that type, and different invariants need to be maintained by the operations (being strictly
increasing for the standard ordering and for the case-insensitive ordering). Applying operations
from AbstractStringSet to values of type NoCaseStringSet.set could give incorrect results, or
build lists that violate the invariants of NoCaseStringSet.

2.5 Modules and separate compilation

All examples of modules so far have been given in the context of the interactive system. However,
modules are most useful for large, batch-compiled programs. For these programs, it is a practi-
cal necessity to split the source into several files, called compilation units, that can be compiled
separately, thus minimizing recompilation after changes.

In OCaml, compilation units are special cases of structures and signatures, and the relationship
between the units can be explained easily in terms of the module system. A compilation unit A
comprises two files:

e the implementation file A.m1, which contains a sequence of definitions, analogous to the inside
of a struct...end construct;

e the interface file A.mli, which contains a sequence of specifications, analogous to the inside
of a sig...end construct.

38

These two files together define a structure named A as if the following definition was entered at
top-level:

module A: sig (* contents of file A.mli *) end
= struct (* contents of file A.ml *) end;;

The files that define the compilation units can be compiled separately using the ocamlc -c
command (the -c option means “compile only, do not try to link”); this produces compiled interface
files (with extension .cmi) and compiled object code files (with extension .cmo). When all units
have been compiled, their .cmo files are linked together using the ocamlc command. For instance,
the following commands compile and link a program composed of two compilation units Aux and
Main:

$ ocamlc -c Aux.mli # produces aux.cmi
$ ocamlc -c Aux.ml # produces aux.cmo
$ ocamlc -c Main.mli # produces main.cmi
$ ocamlc -c Main.ml # produces main.cmo
$ ocamlc -o theprogram Aux.cmo Main.cmo

The program behaves exactly as if the following phrases were entered at top-level:

module Aux: sig (* contents of Aux.mli *) end

= struct (* contents of Aux.ml *) end;;
module Main: sig (* contents of Main.mli *) end

= struct (* contents of Main.ml *) end;;

In particular, Main can refer to Aux: the definitions and declarations contained in Main.ml and
Main.mli can refer to definition in Aux.ml, using the Aux.ident notation, provided these definitions
are exported in Aux.mli.

The order in which the .cmo files are given to ocamlc during the linking phase determines the
order in which the module definitions occur. Hence, in the example above, Aux appears first and
Main can refer to it, but Aux cannot refer to Main.

Note that only top-level structures can be mapped to separately-compiled files, but neither
functors nor module types. However, all module-class objects can appear as components of a
structure, so the solution is to put the functor or module type inside a structure, which can then
be mapped to a file.

Chapter 3

Objects in OCaml

(Chapter written by Jérome Vouillon, Didier Rémy and Jacques Garrigue)

This chapter gives an overview of the object-oriented features of OCaml.

Note that the relationship between object, class and type in OCaml is different than in main-
stream object-oriented languages such as Java and C+-+, so you shouldn’t assume that similar
keywords mean the same thing. Object-oriented features are used much less frequently in OCaml
than in those languages. OCaml has alternatives that are often more appropriate, such as modules
and functors. Indeed, many OCaml programs do not use objects at all.

3.1 Classes and objects

The class point below defines one instance variable x and two methods get_x and move. The
initial value of the instance variable is 0. The variable x is declared mutable, so the method move
can change its value.

class point =
object
val mutable x = 0
method get_x = x
method move d = x <- x +d
end;;
class point :
object val mutable x : int method get_x : int method move : int -> unit end

We now create a new point p, instance of the point class.

let p = new point;;
val p : point = <obj>

Note that the type of p is point. This is an abbreviation automatically defined by the class
definition above. It stands for the object type <get_x : int; move : int -> unit>, listing the
methods of class point along with their types.

We now invoke some methods of p:

39

40

pHget_x;;
- : int =0
p#move 3;;
- : unit = ()
pHget_x;;
- : int = 3

The evaluation of the body of a class only takes place at object creation time. Therefore, in the
following example, the instance variable x is initialized to different values for two different objects.

let x0 = ref O;;
val x0 : int ref = {contents = O}

class point =
object

val mutable x = incr x0; !'x0
method get_x = x

method move d = x <- x + d

end; ;

class point :
object val mutable x : int method get_x : int method move : int -> unit end

new point#get_x;;
- int =1
new point#get_x;;
- : int = 2

The class point can also be abstracted over the initial values of the x coordinate.

class point = fun x_init ->
object
val mutable x = x_init
method get_x = x
method move d = x <- x +d
end;;
class point :
int ->
object val mutable x : int method get_x : int method move : int -> unit end

#
#
#
#
#
#

Like in function definitions, the definition above can be abbreviated as:

class point x_init =
object
val mutable x = x_init
method get_x = x
method move d = x <- x + d
end;;
class point :
int ->
object val mutable x : int method get_x : int method move : int -> unit end

Chapter 3. Objects in OCaml 41

An instance of the class point is now a function that expects an initial parameter to create a point
object:

new point;;
- : int -> point = <fun>
let p = new point 7;;

val p : point = <obj>

The parameter x_init is, of course, visible in the whole body of the definition, including methods.
For instance, the method get_offset in the class below returns the position of the object relative
to its initial position.

class point x_init =
object
val mutable x = x_init
method get_x = x
method get_offset = x - x_init
method move d = x <- x + d
end;;
class point :
int ->
object

val mutable x : int

method get_offset : int

method get_x : int

method move : int -> unit
end

Expressions can be evaluated and bound before defining the object body of the class. This is useful
to enforce invariants. For instance, points can be automatically adjusted to the nearest point on a
grid, as follows:

class adjusted_point x_init =
let origin = (x_init / 10) * 10 in

object
val mutable x = origin
method get_x = x
method get_offset = x - origin
method move d = x <- x + d
end;;
class adjusted_point :
int ->
object

val mutable x : int

method get_offset : int

method get_x : int

method move : int —-> unit
end

42

(One could also raise an exception if the x_init coordinate is not on the grid.) In fact, the same
effect could here be obtained by calling the definition of class point with the value of the origin.

class adjusted_point x_init = point ((x_init / 10) * 10);;
class adjusted_point : int -> point

An alternate solution would have been to define the adjustment in a special allocation function:

let new_adjusted_point x_init = new point ((x_init / 10) * 10);;
val new_adjusted_point : int -> point = <fun>

However, the former pattern is generally more appropriate, since the code for adjustment is part
of the definition of the class and will be inherited.

This ability provides class constructors as can be found in other languages. Several constructors
can be defined this way to build objects of the same class but with different initialization patterns;
an alternative is to use initializers, as described below in section 3.4.

3.2 Immediate objects

There is another, more direct way to create an object: create it without going through a class.
The syntax is exactly the same as for class expressions, but the result is a single object rather
than a class. All the constructs described in the rest of this section also apply to immediate objects.

#

#

val mutable x = 0

method get_x = x

method move d = x <- x + d
end;;

val p : < get_x : int; move : int -> unit > = <obj>
pHget_x;;

- : int =0

p#move 3;;

- : unit = ()

pHget_x;;

- : int = 3

Unlike classes, which cannot be defined inside an expression, immediate objects can appear
anywhere, using variables from their environment.

let minmax x y =
if x < y then object method min = x method max = y end

else object method min = y method max = x end;;
val minmax : 'a -> 'a -> < max : 'a; min : 'a > = <fun>

Immediate objects have two weaknesses compared to classes: their types are not abbreviated,
and you cannot inherit from them. But these two weaknesses can be advantages in some situations,
as we will see in sections 3.3 and 3.10.

Chapter 3. Objects in OCaml 43

3.3 Reference to self

A method or an initializer can invoke methods on self (that is, the current object). For that, self
must be explicitly bound, here to the variable s (s could be any identifier, even though we will
often choose the name self.)

class printable_point x_init =
object (s)
val mutable x = x_init
method get_x = x
method move d = x <- x + d
method print = print_int s#get_x
end;;
class printable_point :
int ->
object
val mutable x : int
method get_x : int
method move : int -> unit
method print : unit
end

let p = new printable_point 7;;
val p : printable_point = <obj>

p#print;;
7- : unit = ()

Dynamically, the variable s is bound at the invocation of a method. In particular, when the class
printable_point is inherited, the variable s will be correctly bound to the object of the subclass.

A common problem with self is that, as its type may be extended in subclasses, you cannot fix
it in advance. Here is a simple example.

let ints = ref [];;
val ints : '_weakl list ref = {contents = []}

class my_int =
object (self)

method n =1

method register = ints := self :: !ints

end ;;

Error: This expression has type < n : int; register : 'a; .. >

but an expression was expected of type 'weakl
Self type cannot escape its class

You can ignore the first two lines of the error message. What matters is the last one: putting self
into an external reference would make it impossible to extend it through inheritance. We will see
in section 3.12 a workaround to this problem. Note however that, since immediate objects are not
extensible, the problem does not occur with them.

44

let my_int =
object (self)

method n = 1
method register = ints := self :: !ints
end;;

val my_int : < n : int; register : unit > = <obj>

3.4 Initializers

Let-bindings within class definitions are evaluated before the object is constructed. It is also possible
to evaluate an expression immediately after the object has been built. Such code is written as an
anonymous hidden method called an initializer. Therefore, it can access self and the instance
variables.

class printable_point x_init
let origin = (x_init / 10) * 10 in
object (self)
val mutable x = origin
method get_x = x
method move d = x <- x + d
method print = print_int self#get_x
initializer print_string "new point at "; self#print; print_newline ()
end;;
class printable_point :
int ->
object
val mutable x : int
method get_x : int
method move : int -> unit
method print : unit
end

let p = new printable_point 17;;
new point at 10
val p : printable_point = <obj>

Initializers cannot be overridden. On the contrary, all initializers are evaluated sequentially. Ini-
tializers are particularly useful to enforce invariants. Another example can be seen in section 6.1.

3.5 Virtual methods

It is possible to declare a method without actually defining it, using the keyword virtual. This
method will be provided later in subclasses. A class containing virtual methods must be flagged
virtual, and cannot be instantiated (that is, no object of this class can be created). It still defines
type abbreviations (treating virtual methods as other methods.)

class virtual abstract_point x_init =

Chapter 3. Objects in OCaml

object (self)
method virtual get_x : int
method get_offset = self#get_x - x_init
method virtual move : int -> unit
end;;
class virtual abstract_point :
int ->
object
method get_offset : int
method virtual get_x : int
method virtual move : int -> unit

end
class point x_init =
object
inherit abstract_point x_init
val mutable x = x_init
method get_x = x
method move d = x <- x + d
end;;
class point :
int ->
object

val mutable x : int

method get_offset : int

method get_x : int

method move : int -> unit
end

Instance variables can also be declared as virtual, with the same effect as with methods.

class virtual abstract_point2 =

object

val mutable virtual x : int
method move d = x <- x + d
end;;

class virtual abstract_point2 :
object val mutable virtual x : int method move : int -> unit end

class point2 x_init =
object
inherit abstract_point2
val mutable x = x_init
method get_offset = x - x_init
end;;
class point2 :
int ->
object
val mutable x : int
method get_offset : int

#
#
#
#
#
#

46

method move : int -> unit
end

3.6 Private methods

Private methods are methods that do not appear in object interfaces. They can only be invoked
from other method