
JDBC™ Guide:
Getting Started

JDBC GUIDEii

. iii
Copyright Information

 1996, 1997, Sun Microsystems, Inc. All rights reserved.
2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.

This document is protected by copyright. No part of this document may be reproduced in
any form by any means without prior written authorization of Sun and its licensors, if any.

The information described in this document may be protected by one or more U.S.
patents, foreign patents, or pending applications.

TRADEMARKS

Sun, the Sun logo, Sun Microsystems, JavaBeans, JDK, Java, HotJava, HotJava Views,
Visual Java, Solaris, NEO, Joe, Netra, NFS, ONC, ONC+, OpenWindows, PC-NFS, SNM,
SunNet Manager, Solaris sunburst design, Solstice, SunCore, SolarNet, SunWeb, Sun
Workstation, The Network Is The Computer, ToolTalk, Ultra, Ultracomputing,
Ultraserver, Where The Network Is Going, Sun WorkShop, XView, Java WorkShop, the
Java Coffee Cup logo, and Visual Java are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States and other countries.
UNIX ® is a registered trademark in the United States and other countries, exclusively
licensed through X/Open Company, Ltd.
Adobe ® is a registered trademark of Adobe Systems, Inc.
Netscape Navigator™ is a trademark of Netscape Communications Corporation.
All other product names mentioned herein are the trademarks of their respective owners.

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR
NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR
TYPOGRAPHICAL ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE
INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE DOCUMENT. SUN MICROSYSTEMS, INC. MAY MAKE
IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE
PROGRAM(S) DESCRIBED IN THIS DOCUMENT AT ANY TIME.

INTRODUCTIONiv

 . 1
 . . 1
. . 2
. 3
. . 4
 . 5
. . 6
. . . 7
 . . 8
. . 9

10
 . 10

. 13
 . 13
 . 13
. 14
. 15

17
 . 17
 . 18
 . 19
. 20

 21
 . 21
21

 . 23

 . 25
 . 25
5
6
7
29
Table of Contents

1 Introduction. .
1.1 What Is JDBC™? .

1.1.1 What Does JDBC Do? .
1.1.2 JDBC Is a Low-level API and a Base for Higher-level APIs. . . .
1.1.3 JDBC versus ODBC and other APIs .
1.1.4 Two-tier and Three-tier Models .
1.1.5 SQL Conformance .

1.2 JDBC Products .
1.2.1 JavaSoft Framework. .
1.2.2 JDBC Driver Types .
1.2.3 Obtaining JDBC Drivers .
1.2.4 Other Products .

2 Connection.
2.1 Overview .

2.1.1 Opening a Connection .
2.1.2 URLs in General Use .
2.1.3 JDBC URLs .
2.1.4 The “odbc” Subprotocol. .
2.1.5 Registering Subprotocols .
2.1.6 Sending SQL Statements .
2.1.7 Transactions .
2.1.8 Transaction Isolation Levels .

3 DriverManager .
3.1 Overview .

3.1.1 Keeping Track of Available Drivers. .
3.1.2 Establishing a Connection .

4 Statement .
4.1 Overview .

4.1.1 CreatingStatement Objects . 2
4.1.2 ExecutingStatement Objects . 2
4.1.3 Using the MethodExecute . 2
4.1.4 Statement Completion .
4.1.5 SQL Escape Syntax inStatement Objects 30
v

vi

. 33

. . 33

. . 34
. . 34
. . 35
 . 37
. 38
. 38

 39
. . 39

. 40
. . 41
42
42
. . 42

 45
. . 45

. . 46

. . 47
. . 48
 . 48

49
. . 49
. . 49
 . . 50

0

 . 51

2
2
. . 53
. . 53
. . 54
 . 54
. . 56
. . 57
. . 58
. . 59
. . 60
5 ResultSet .
5.1 Overview .

5.1.1 Rows and Cursors .
5.1.2 Columns .
5.1.3 Data Types and Conversions .
5.1.4 Using Streams for Very Large Row Values.
5.1.5 NULL Result Values .
5.1.6 Optional or Multiple Result Sets.

6 PreparedStatement .
6.1 Overview .

6.1.1 CreatingPreparedStatement Objects. 40
6.1.2 PassingIN Parameters.
6.1.3 Data Type Conformance on IN Parameters.
6.1.4 UsingsetObject .
6.1.5 SendingSQL NULL as an IN parameter. .
6.1.6 Sending Very Large IN Parameters .

7 CallableStatement .
7.1 Overview .

7.1.1 Creating aCallableStatement Object 46
7.1.2 IN and OUT Parameters .
7.1.3 INOUT Parameters .
7.1.4 Retrieve OUT Parameters after Results
7.1.5 Retrieving NULL Values as OUT Parameters.

8 Mapping SQL and Java Types .
8.1 Overview .
8.2 Mapping SQL Data Types into Java .
8.3 SQL Types .

8.3.1 CHAR, VARCHAR, andLONGVARCHAR. 50
8.3.2 DECIMAL andNUMERIC . 5
8.3.3 BINARY, VARBINARY, andLONGVARBINARY 51
8.3.4 BIT .
8.3.5 TINYINT, SMALLINT, INTEGER, andBIGINT 51
8.3.6 REAL, FLOAT, andDOUBLE. 5
8.3.7 DATE, TIME, andTIMESTAMP . 5

8.4 Examples of Mapping .
8.4.1 Simple SQL Statement .
8.4.2 SQL Statement with IN Parameters .
8.4.3 SQL Statement with INOUT Parameters

8.5 Tables for Data Type Mapping .
8.5.1 SQL Types Mapped to Java Types .
8.5.2 Java Types Mapped to SQL Types .
8.5.3 SQL Types Mapped to Java Object Types.
8.5.4 Java Object Types Mapped to SQL Types.

1

 . 63

. 69
. 69
69

. 69

. 69
. 70
 . 70
70
70

 . 71
71
71
71

 . 72
. . 72
8.5.5 Conversions bysetObject . 6
8.5.6 SQL Types Retrieved byResultSet.getXXX Methods 62

9 Sample Code .

10 JDBC-ODBC Release Notes.
10.1 JDBC-ODBC Bridge .

10.1.1 What Is the JDBC-ODBC Bridge? .
10.1.2 What Version of ODBC Is Supported?
10.1.3 The Bridge Implementation .
10.1.4 Installation .

10.2 Using the Bridge. .
10.2.1 Using the Bridge from an Applet .
10.2.2 Most Browsers Do Not Support the Bridge
10.2.3 Tested Configurations. .
10.2.4 ODBC Drivers Known to Work with the Bridge
10.2.5 ODBC Driver Incompatibilities .
10.2.6 What Is the JDBC URL Supported by the Bridge?
10.2.7 Debugging .

10.3 General Notes .
vii

viii

.INTRODUCTION 1

A
k,
d in
Java

rest,
 often
et of
ides a
tabase

nal
 pro-
atabase,
 single
tate-
Java
rent
BC

atically
plica-
rent
1
Introduction

THIS introduction is excerpted fromJDBC™ Database Access with Java™:
Tutorial and Annotated Reference, currently in progress at JavaSoft. This boo
both a tutorial and the definitive reference manual for JDBC, will be publishe
the spring of 1997 by Addison-Wesley Publishing Company as part of the
series.

1.1 What Is JDBC™?

JDBC™ is a Java™ API for executing SQL statements. (As a point of inte
JDBC is a trademarked name and is not an acronym; nevertheless, JDBC is
thought of as standing for “Java Database Connectivity”.) It consists of a s
classes and interfaces written in the Java programming language. JDBC prov
standard API for tool/database developers and makes it possible to write da
applications using a pure Java API.

Using JDBC, it is easy to send SQL statements to virtually any relatio
database. In other words, with the JDBC API, it isn’t necessary to write one
gram to access a Sybase database, another program to access an Oracle d
another program to access an Informix database, and so on. One can write a
program using the JDBC API, and the program will be able to send SQL s
ments to the appropriate database. And, with an application written in the
programming language, one also doesn’t have to worry about writing diffe
applications to run on different platforms. The combination of Java and JD
lets a programmer write it once and run it anywhere.

 Java, being robust, secure, easy to use, easy to understand, and autom
downloadable on a network, is an excellent language basis for database ap
tions. What is needed is a way for Java applications to talk to a variety of diffe
databases. JDBC is the mechanism for doing this.

INTRODUCTION2

d the
uses
BC to
ows,
intra-
e, the

 dis-
o use
iffer-

ons is
 can
y has
, Java
cus-
JDBC extends what can be done in Java. For example, with Java an
JDBC API, it is possible to publish a web page containing an applet that
information obtained from a remote database. Or an enterprise can use JD
connect all its employees (even if they are using a conglomeration of Wind
Macintosh, and UNIX machines) to one or more internal databases via an
net. With more and more programmers using the Java programming languag
need for easy database access from Java is continuing to grow.

MIS managers like the combination of Java and JDBC because it makes
seminating information easy and economical. Businesses can continue t
their installed databases and access information easily even if it is stored on d
ent database management systems. Development time for new applicati
short. Installation and version control are greatly simplified. A programmer
write an application or an update once, put it on the server, and everybod
access to the latest version. And for businesses selling information services
and JDBC offer a better way of getting out information updates to external
tomers.

1.1.1 What Does JDBC Do?

Simply put, JDBC makes it possible to do three things:

1. establish a connection with a database

2. send SQL statements

3. process the results.

The following code fragment gives a basic example of these three steps:

Connection con = DriverManager.getConnection (

"jdbc:odbc:wombat", "login", "password");

Statement stmt = con.createStatement();

ResultSet rs = stmt.executeQuery("SELECT a, b, c FROM Table1");

while (rs.next()) {

int x = getInt("a");

String s = getString("b");

float f = getFloat("c");

}

.INTRODUCTION 3

ll”)
 than
 which
ly,”
d the
two

Ss
.
thods.
L

n a
epro-

 and
”
ch col-
 then
 data
ap-
om-

 on
 have
e end
 from

s and
 the
ssary
abase
1.1.2 JDBC Is a Low-level API and a Base for Higher-level APIs

JDBC is a “low-level” interface, which means that it is used to invoke (or “ca
SQL commands directly. It works very well in this capacity and is easier to use
other database connectivity APIs, but it was designed also to be a base upon
to build higher-level interfaces and tools. A higher-level interface is “user-friend
using a more understandable or more convenient API that is translated behin
scenes into a low-level interface such as JDBC. At the time of this writing,
kinds of higher-level APIs are under development on top of JDBC:

1. an embedded SQL for Java. At least one vendor plans to build this. DBM
implement SQL, a language designed specifically for use with databases
JDBC requires that the SQL statements be passed as Strings to Java me
An embedded SQL preprocessor allows a programmer to instead mix SQ
statements directly with Java: for example, a Java variable can be used i
SQL statement to receive or provide SQL values. The embedded SQL pr
cessor then translates this Java/SQL mix into Java with JDBC calls.

2. a direct mapping of relational database tables to Java classes. JavaSoft
others have announced plans to implement this. In this “object/relational
mapping, each row of the table becomes an instance of that class, and ea
umn value corresponds to an attribute of that instance. Programmers can
operate directly on Java objects; the required SQL calls to fetch and store
are automatically generated “beneath the covers.” More sophisticated m
pings are also provided, for example, where rows of multiple tables are c
bined in a Java class.

As interest in JDBC has grown, more developers have been working
JDBC-based tools to make building programs easier, as well. Programmers
also been writing applications that make accessing a database easier for th
user. For example, an application might present a menu of database tasks
which to choose. After a task is selected, the application presents prompt
blanks for filling in information needed to carry out the selected task. With
requested input typed in, the application then automatically invokes the nece
SQL commands. With the help of such an application, users can perform dat
tasks even when they have little or no knowledge of SQL syntax.

INTRODUCTION4

bly
es. It
 why

ith
er
veral

face.
urity,

sir-
se of

an
 nat-

, and
, was
abil-

.
ally

ete-
 se-

QL
h, so
C

ed on
BC
sy to

O,
any

es that
1.1.3 JDBC versus ODBC and other APIs

At this point, Microsoft’s ODBC (Open DataBase Connectivity) API is proba
the most widely used programming interface for accessing relational databas
offers the ability to connect to almost all databases on almost all platforms. So
not just use ODBC from Java?

 The answer is that youcan use ODBC from Java, but this is best done w
the help of JDBC in the form of the JDBC-ODBC Bridge, which we will cov
shortly. The question now becomes, “Why do you need JDBC?” There are se
answers to this question:

1. ODBC is not appropriate for direct use from Java because it uses a C inter
Calls from Java to native C code have a number of drawbacks in the sec
implementation, robustness, and automatic portability of applications.

2. A literal translation of the ODBC C API into a Java API would not be de
able. For example, Java has no pointers, and ODBC makes copious u
them, including the notoriously error-prone generic pointer “void *”. You c
think of JDBC as ODBC translated into an object-oriented interface that is
ural for Java programmers.

3. ODBC is hard to learn. It mixes simple and advanced features together
it has complex options even for simple queries. JDBC, on the other hand
designed to keep simple things simple while allowing more advanced cap
ities where required.

4. A Java API like JDBC is needed in order to enable a “pure Java” solution
When ODBC is used, the ODBC driver manager and drivers must be manu
installed on every client machine. When the JDBC driver is written compl
ly in Java, however, JDBC code is automatically installable, portable, and
cure on all Java platforms from network computers to mainframes.

In summary, the JDBC API is a natural Java interface to the basic S
abstractions and concepts. It builds on ODBC rather than starting from scratc
programmers familiar with ODBC will find it very easy to learn JDBC. JDB
retains the basic design features of ODBC; in fact, both interfaces are bas
the X/Open SQL CLI (Call Level Interface). The big difference is that JD
builds on and reinforces the style and virtues of Java, and, of course, it is ea
use.

More recently, Microsoft has introduced new APIs beyond ODBC: RD
ADO, and OLE DB. These designs move in the same direction as JDBC in m
ways, that is, in being an object-oriented database interface based on class

.INTRODUCTION 5

ality
cially
thin

 the
her-
ioned

s.
ata-
data-
elivered
er. The
d via a

r. The
 cor-

ces,
the SQL
hem to
 mid-
dates
 a mid-
lated
can be implemented on ODBC. However, we did not see compelling function
in any of these interfaces to make them an alternative basis to ODBC, espe
with the ODBC driver market well-established. Mostly they represent a
veneer on ODBC. This is not to say that JDBC does not need to evolve from
initial release; however, we feel that most new functionality belongs in hig
level APIs such as the object/relational mappings and embedded SQL ment
in the previous section.

1.1.4 Two-tier and Three-tier Models

The JDBC API supports both two-tier and three-tier models for database acces
In the two-tier model, a Java applet or application talks directly to the d

base. This requires a JDBC driver that can communicate with the particular
base management system being accessed. A user’s SQL statements are d
to the database, and the results of those statements are sent back to the us
database may be located on another machine to which the user is connecte
network. This is referred to as aclient/server configuration, with the user’s
machine as the client, and the machine housing the database as the serve
network can be an intranet, which, for example, connects employees within a
poration, or it can be the Internet.

In the three-tier model, commands are sent to a “middle tier” of servi
which then send SQL statements to the database. The database processes
statements and sends the results back to the middle tier, which then sends t
the user. MIS directors find the three-tier model very attractive because the
dle tier makes it possible to maintain control over access and the kinds of up
that can be made to corporate data. Another advantage is that when there is
dle tier, the user can employ an easy-to-use higher-level API which is trans

Java

JDBC

DBMS

Application

DBMS

Client machine

Database server

DBMS-proprietary protocol

INTRODUCTION6

 the

C or
ing
, it is

ak-
curity
er.

ational
nage-
 con-
more
res or
at the
nc-

g to
ation
ceiv-
SQL,
by the middle tier into the appropriate low-level calls. Finally, in many cases
three-tier architecture can provide performance advantages.

Until now the middle tier has typically been written in languages such as
C++, which offer fast performance. However, with the introduction of optimiz
compilers that translate Java bytecode into efficient machine-specific code
becoming practical to implement the middle tier in Java. This is a big plus, m
ing it possible to take advantage of Java’s robustness, multithreading, and se
features. JDBC is important to allow database access from a Java middle ti

1.1.5 SQL Conformance

Structured Query Language (SQL) is the standard language for accessing rel
databases. One area of difficulty is that although most DBMSs (DataBase Ma
ment Systems) use a standard form of SQL for basic functionality, they do not
form to the more recently-defined standard SQL syntax or semantics for
advanced functionality. For example, not all databases support stored procedu
outer joins, and those that do are not consistent with each other. It is hoped th
portion of SQL that is truly standard will expand to include more and more fu
tionality. In the meantime, however, the JDBC API must support SQL as it is.

One way the JDBC API deals with this problem is to allow any query strin
be passed through to an underlying DBMS driver. This means that an applic
is free to use as much SQL functionality as desired, but it runs the risk of re
ing an error on some DBMSs. In fact, an application query need not even be

Java applet or

JDBC

HTML browser

DBMS

Application
Server (Java)

Client machine (GUI)

Server machine (business logic)

Database server

HTTP, RMI, or CORBA calls

DBMS-proprietary protocol

.INTRODUCTION 7

(for

vide
scape

 more
literals

ay.

 and

level
mance
 to
 use

NSI
 Insti-
ver
he test

C
These
thods
Level
oft is

tion
 and
dors,
 the

 data-
or it may be a specialized derivative of SQL designed for specific DBMSs
document or image queries, for example).

A second way JDBC deals with problems of SQL conformance is to pro
ODBC-style escape clauses, which are discussed in section 4.1.5, “SQL E
Syntax in Statement Objects.”

. The escape syntax provides a standard JDBC syntax for several of the
common areas of SQL divergence. For example, there are escapes for date
and for stored procedure calls.

For complex applications, JDBC deals with SQL conformance in a third w
It provides descriptive information about the DBMS by means of theData-

baseMetaData interface so that applications can adapt to the requirements
capabilities of each DBMS.

Because the JDBC API will be used as a base API for developing higher-
database access tools and APIs, it also has to address the problem of confor
for anything built on it. The designation “JDBC COMPLIANT™” was created
set a standard level of JDBC functionality on which users can rely. In order to
this designation, a driver must support at least ANSI SQL-2 Entry Level. (A
SQL-2 refers to the standards adopted by the American National Standards
tute in 1992. Entry Level refers to a specific list of SQL capabilities.) Dri
developers can ascertain that their drivers meet these standards by using t
suite available with the JDBC API.

The “JDBC COMPLIANT™” designation indicates that a vendor’s JDB
implementation has passed the conformance tests provided by JavaSoft.
conformance tests check for the existence of all of the classes and me
defined in the JDBC API, and check as much as possible that the SQL Entry
functionality is available. Such tests are not exhaustive, of course, and JavaS
not currently branding vendor implementations, but this compliance defini
provides some degree of confidence in a JDBC implementation. With wider
wider acceptance of the JDBC API by database vendors, connectivity ven
Internet service vendors, and application writers, JDBC is quickly becoming
standard for Java database access.

1.2 JDBC Products

The JDBC API is a natural choice for Java developers because it offers easy
base access for Java applications and applets.

INTRODUCTION8

ady
ts will
kly
 latest

loper’s

ctu-
ions

 will
esig-

ers.
term
 are
At the time of this writing, a number of JDBC-based products have alre
been deployed or are under development. Some description of these produc
put JDBC in perspective. Of course, the information in this section will quic
become dated, so the reader should consult the JDBC web page for the
information. It can be found by navigating from the following URL:

http://www.javasoft.com/products/jdbc

1.2.1 JavaSoft Framework

JavaSoft provides three JDBC product components as part of the Java Deve
Kit (JDK):

• the JDBC driver manager,

• the JDBC driver test suite, and

• the JDBC-ODBC bridge.

The JDBC driver manager is the backbone of the JDBC architecture. It a
ally is quite small and simple; its primary function is to connect Java applicat
to the correct JDBC driver and then get out of the way.

The JDBC driver test suite provides some confidence that JDBC drivers
run your program. Only drivers that pass the JDBC driver test suite can be d
nated JDBC COMPLIANT™.

The JDBC-ODBC bridge allows ODBC drivers to be used as JDBC driv
It was implemented as a way to get JDBC off the ground quickly, and long
will provide a way to access some of the less popular DBMSs if JDBC drivers
not implemented for them.

JDBC-ODBC
Bridge Driver

Driver Driver . . .

ODBC and
DB Drivers

Proprietary database access protocols

BA
JDBC-Net

Driver

JDBC

JDBC
Drivers

Proprietary database access protocols

JDBC Driver Manager

Java Application
JDBC API

Middleware
protocol

.INTRODUCTION 9

s:

s
ny
 uses
ate
ion

S.
ary

-
by a
ts to
ndor.
n-

 for
itional
b im-
base

the
 ac-
rs
 these

 way
utions
 sense
(Cate-
if a
any
1.2.2 JDBC Driver Types

The JDBC drivers that we are aware of at this time fit into one of four categorie

1. JDBC-ODBC bridge plus ODBC driver: The JavaSoft bridge product provide
JDBC access via ODBC drivers. Note that ODBC binary code, and in ma
cases database client code, must be loaded on each client machine that
this driver. As a result, this kind of driver is most appropriate on a corpor
network where client installations are not a major problem, or for applicat
server code written in Java in a three-tier architecture.

2. Native-API partly-Java driver:This kind of driver converts JDBC calls into
calls on the client API for Oracle, Sybase, Informix, DB2, or other DBM
Note that, like the bridge driver, this style of driver requires that some bin
code be loaded on each client machine.

3. JDBC-Net pure Java driver:This driver translates JDBC calls into a DBMS
independent net protocol which is then translated to a DBMS protocol
server. This net server middleware is able to connect its pure Java clien
many different databases. The specific protocol used depends on the ve
In general, this is the most flexible JDBC alternative. It is likely that all ve
dors of this solution will provide products suitable for Intranet use. In order
these products to also support Internet access, they must handle the add
requirements for security, access through firewalls, and so on, that the We
poses. Several vendors are adding JDBC drivers to their existing data
middleware products.

4. Native-protocol pure Java driver:This kind of driver converts JDBC calls into
the network protcol used by DBMSs directly. This allows a direct call from
client machine to the DBMS server and is a practical solution for Intranet
cess. Since many of these protocols are proprietary, the database vendo
themselves will be the primary source, and several database vendors have
in progress.

Eventually, we expect that driver categories 3 and 4 will be the preferred
to access databases from JDBC. Driver categories 1 and 2 are interim sol
where direct pure Java drivers are not yet available. Category 4 is in some
the ideal, although there are a few cases where Category 3 may be better.
gory 3 might be preferred if a thin DBMS-independent client is desired or
DBMS-independent protocol is standardized and implemented directly by m
DBMS vendors.)

INTRODUCTION10

vers
tegory
riv-

7, we

s
and
e the

aSoft

proto-
lient
The following chart shows the four categories and their properties:

1.2.3 Obtaining JDBC Drivers

At the time of this writing, there are dozens of drivers in Category 1: ODBC dri
that can be used with JavaSoft’s bridge. There are currently about a dozen Ca
2 drivers built on top of native APIs for DBMSs. There are a few Category 3 d
ers. Currently there are at least two Category 4 drivers, but by the end of 199
expect that there will be Category 4 drivers for all of the major DBMSs.

To get the latest information on drivers, check the JDBC web page athttp://

www.javasoft.com/products/jdbc. The first vendors with Category 3 driver
available were SCO, Open Horizon, Visigenic, and WebLogic. JavaSoft
Intersolv, a leading database connectivity vendor, worked together to produc
JDBC-ODBC Bridge and the JDBC Driver Test Suite.

1.2.4 Other Products

Various JDBC application development tools are under way. Watch the Jav
pages for updates.

JavaSoft or a standards group may attempt to standardize on a network
col that is DBMS-independent. In that case, JavaSoft could bundle the “c

 DRIVER CATEGORY ALL JAVA? NET PROTOCOL

1 - JDBC-OCBC Bridge No Direct

2 - Native API as basis No Direct

3 - JDBC-Net Yes Requires Connector

4 - Native protocol as basis Yes Direct

.INTRODUCTION 11

nd
side” implementation of the protocol with the JDK (Java Developer’s Kit), a
various vendors could provide the server side:.

Java

JDBC-Net

Code

DBMS

Client machine or application server

Database server

DBMS-independent protocol

Listener/
Translator

INTRODUCTION12

JAVA.SQL.CONNECTION 13

al
to-
g of

 ses-
eturned

ith a

ethod
he
ocate

d
at

t to a
how-
-

2
Connection

This overview is excerpted fromJDBC™ Database Access with Java™: A Tutori
and Annotated Reference, currently in progress at JavaSoft. This book, both a tu
rial and the definitive reference manual for JDBC, will be published in the sprin
1997 by Addison-Wesley Publishing Company as part of the Java series.

2.1 Overview

A Connection object represents a connection with a database. A connection
sion includes the SQL statements that are executed and the results that are r
over that connection. A single application can have one or more connections w
single database, or it can have connections with many different databases.

2.1.1 Opening a Connection

The standard way to establish a connection with a database is to call the m
DriverManager.getConnection. This method takes a string containing a URL. T
DriverManager class, referred to as the JDBC management layer, attempts to l
a driver than can connect to the database represented by that URL. TheDriver-

Manager class maintains a list of registeredDriver classes, and when the metho
getConnection is called, it checks with each driver in the list until it finds one th
can connect to the database specified in the URL. TheDriver methodconnect uses
this URL to actually establish the connection.

A user can bypass the JDBC management layer and callDriver methods
directly. This could be useful in the rare case that two drivers can connec
database and the user wants to explicitly select a particular driver. Normally,
ever, it is much easier to just let theDriverManager class handle opening a con
nection.

JAVA.SQL.CONNECTION14

ed at

n of

 the
f three

elow

-
an

ess
 dou-
ngle
”).

e is a

me
The following code exemplifies opening a connection to a database locat
the URL"jdbc:odbc:wombat" with a user ID of"oboy" and“12Java” as the pass-
word :

String url = "jdbc:odbc:wombat";

Connection con = DriverManager.getConnection(url, "oboy", "12Java");

2.1.2 URLs in General Use

Since URLs often cause some confusion, we will first give a brief explanatio
URLs in general and then go on to a discussion of JDBC URLs.

A URL (Uniform Resource Locator) gives information for locating a resource on
Internet. It can be thought of as an address. For general use, a URL is made up o
parts, with only the first part being required for all URLs. (Boldface in the examples b
is used to indicate the part being described; it is not part of the URL.)

A URL has three parts:

1. Protocol used to access the information. The protocol is always followed
by a colon. Some common protocols areftp, which specifies “file transfer
protocol,” andhttp, which specifies “hypertext transfer protocol.” If the pro
tocol isfile, it indicates that the resource is in a local file system rather th
on the Internet.

ftp://javasoft.com/docs/JDK-1_apidocs.zip

http://java.sun.com/products/JDK/1.1

file:/home/haroldw/docs/tutorial.html

2. Host information. This part gives the information needed to find and acc
the host where the resource resides. The host information begins with a
ble slash (“//”) if this is an Internet application, such as ftp or http, and a si
slash (“/”) if it is not. The host information ends with a single slash (“/
Host information is itself divided into three parts:

■ Domain name of the host if the resource resides on the Internet; if the resourc
local file, there is no host name. Instead there is just the path of the file.

■ User login name and password, which are included if needed.

■ Port number, which is included if needed. A port number follows the host na
and a colon (“:”).

JAVA.SQL.CONNECTION 15

e:

river
tand
 pre-
DBC
l,
for-
d pass-
rying
ly the
mend

 are
ent
The most common case is to have double slashes and only the hostnam

http://java.sun.com

The following URL contains the port number 80:

http://java.sun.com:80/doc/tutorial.html

The following is an example of a URL with a login name"happy" and pass-
word"1234" included as part of the hostname:

http://netsmile.grin.com."happy"."1234"/news/latest

In the domain namejava.sun.com, com indicates thatjava.sun is a commer-
cial venture. Some other designations areedu for an educational institution,
org for a non-profit organization, andgov for governmental organization.

3. Path of what is to be accessed. In the following example,products andJDK
are directories, and1.0.2 is a file. This URL gives the location of the Java
Developer’s Kit, version 1.0.2:

http://java.sun.com/products/JDK/1.0.2

2.1.3 JDBC URLs

A JDBC URL provides a way of identifying a database so that the appropriate d
will recognize it and establish a connection with it. A driver needs to unders
only one URL naming syntax and can happily reject any other URLs that are
sented to it. It is the driver writers themselves who determine the format of a J
URL. The first part will always bejdbc. The second part will be the subprotoco
which the driver writer provides. The rest of a JDBC URL is the datasource. In
mation needed to access the data source, such as the user’s login name an
word, may be part of the JDBC URL, or it may be supplied separately. Users t
to connect to a database just follow the format provided with a driver and supp
information needed to access a database. JDBC’s role is simply to recom
some conventions for driver writers to use in structuring JDBC URLs.

Since JDBC URLs are used with various kinds of drivers, the conventions
of necessity very flexible. First, they allow different drivers to use differ

JAVA.SQL.CONNECTION16

ction
that
equir-

BC
ted to
rators
num-
ere is

f the
 syn-

sm,
 of a
ify
ough a

ding
x the
tion

er re-
schemes for naming databases. Theodbc subprotocol, for example, lets the URL
contain attribute values after the subname (but does not require them).

Second, JDBC URLs allow driver writers to encode all necessary conne
information within them. This makes it possible, for example, for an applet
wants to talk to a given database to open the database connection without r
ing the user to do any system administration chores.

Third, JDBC URLs allow a level of indirection. This means that the JD
URL may refer to a logical host or database name that is dynamically transla
the actual name by a network naming system. This allows system administ
to avoid specifying particular hosts as part of the JDBC name. There are a
ber of different network name services (such as DNS, NIS, and DCE), and th
no restriction about which ones can be used.

 Since the standard URL naming mechanism already provides many o
features needed in JDBC URLs, the JDBC URL conventions just add a new
tax. The standard syntax for JDBC URLs is:

jdbc:<subprotocol>:<subname>

A JDBC URL has three parts, which are separated by colons:

1. jdbc is the protocol. The protocol in a JDBC URL is alwaysjdbc.

2. <subprotocol> is usually the driver or the database connectivity mechani
which may be supported by one or more drivers. A prominent example
subprotocol name isodbc, which has been reserved for URLs that spec
ODBC-style data source names. For example, to access a database thr
JDBC-ODBC bridge, one might use a URL such as the following:

jdbc:odbc:fred

In this example, the subprotocol isodbc, and the subnamefred is a local
ODBC data source.

3. <subname> is a way to identify the database. The subname can vary, depen
on the subprotocol, and it can have a subsubname with any internal synta
driver writer chooses. The point of a subname is to give enough informa
to locate the database. In the previous example,fred is enough because ODBC
provides the remainder of the information. A database on a remote serv

JAVA.SQL.CONNECTION 17

r the
C
 con-

that
g any
ource

JDBC
ed
lish a

ight
to its

 To
quires more information, however. If the database is to be accessed ove
Internet, for example, the network address should be included in the JDB
URL as part of the subname and should follow the standard URL naming
vention of //hostname:port/subsubname. Supposing thatdbnet is a protocol
for connecting to a host on the Internet, a JDBC URL might look like this:

jdbc:dbnet://wombat:356/fred

2.1.4 The “odbc” Subprotocol

The subprotocolodbc is a special case. It has been reserved for URLs
specify ODBC-style data source names and has the special feature of allowin
number of attribute values to be specified after the subname (the data s
name). The full syntax for the odbc subprotocol is:

 jdbc:odbc:<data-source-name >[;<attribute-name> =<attribute-value >]*

Thus all of the following are validjdbc:odbc names:

jdbc:odbc:qeor7

jdbc:odbc:wombat

jdbc:odbc:wombat;CacheSize=20;ExtensionCase=LOWER

jdbc:odbc:qeora;UID=kgh;PWD=fooey

2.1.5 Registering Subprotocols

A driver developer can reserve a name to be used as the subprotocol in a
URL. When theDriverManager class presents this name to its list of register
drivers, the driver for which this name is reserved should recognize it and estab
connection to the database it identifies. For example,odbc is reserved for the JDBC-
ODBC Bridge. If there were, for another example, a Miracle Corporation, it m
want to register “miracle” as the subprotocol for the JDBC driver that connects
Miracle DBMS so that no one else would use that name.

JavaSoft is acting as an informal registry for JDBC subprotocol names.
register a subprotocol name, send email to:

jdbc@wombat.eng.sun.com

JAVA.SQL.CONNECTION18

erlying
ts that
-spe-
ser be
 state-

pplica-
stored
 that a
sig-
 stan-

e, and
es.

eters

 when

n

 state-

m
-

2.1.6 Sending SQL Statements

Once a connection is established, it is used to pass SQL statements to its und
database. JDBC does not put any restrictions on the kinds of SQL statemen
can be sent; this provides a great deal of flexibility, allowing the use of database
cific statements or even non-SQL statements. It requires, however, that the u
responsible for making sure that the underlying database can process the SQL
ments being sent and suffer the consequences if it cannot. For example, an a
tion that tries to send a stored procedure call to a DBMS that does not support
procedures will be unsuccessful and generate an exception. JDBC requires
driver provide at least ANSI SQL-2 Entry Level capabilities in order to be de
nated JDBC COMPLIANT™. This means that users can count on at least this
dard level of functionality.

JDBC provides three classes for sending SQL statements to the databas
three methods in theConnection interface create instances of these class
These classes and the methods which create them are listed below:

1. Statement- -created by the methodcreateStatement. A Statement object is
used for sending simple SQL statements.

2. PreparedStatement- -created by the methodprepareStatement. A Prepared-

Statement object is used for SQL statements that take one or more param
as input arguments (IN parameters).PreparedStatement has a group of meth-
ods which set the value of IN parameters, which are sent to the database
the statement is executed. Instances ofPreparedStatement extendStatement
and therefore includeStatement methods. APreparedStatement object has
the potential to be more efficient than aStatement object because it has bee
pre-compiled and stored for future use.

3. CallableStatement- -created by the methodprepareCall. CallableState-

ment objects are used to execute SQL stored procedures- -a group of SQL
ments that is called by name, much like invoking a function. A
CallableStatement object inherits methods for handling IN parameters fro
PreparedStatement; it adds methods for handling OUT and INOUT parame
ters.

The following list gives a quick way to determine whichConnection method
is appropriate for creating different types of SQL statements:

createStatement method is used for

JAVA.SQL.CONNECTION 19

, com-

n a
-
sac-

led, a

 the
e

akes
ethod

er one
 both

ils or
ed

ant
• simple SQL statements (no parameters)

prepareStatement method is used for
• SQL statements with one or more IN parameters
• simple SQL statements that are executed frequently

prepareCall method is used for
• call to stored procedures

2.1.7 Transactions

A transaction consists of one or more statements that have been executed
pleted, and then either committed or rolled back. When the methodcommit or
rollback is called, the current transaction ends and another one begins.

A new connection is in auto-commit mode by default, meaning that whe
statement is completed, the methodcommit will be called on that statement auto
matically. In this case, since each statement is committed individually, a tran
tion consists of only one statement. If auto-commit mode has been disab
transaction will not terminate until the methodcommit or rollback is called
explicitly, so it will include all the statements that have been executed since
last invocation of thecommit or rollback method. In this second case, all th
statements in the transaction are committed or rolled back as a group.

The methodcommit makes permanent any changes an SQL statement m
to a database, and it also releases any locks held by the transaction. The m
rollback will discard those changes.

 Sometimes a user doesn’t want one change to take effect unless anoth
does also. This can be accomplished by disabling auto-commit and grouping
updates into one transaction. If both updates are successful, then thecommit

method is called, making the effects of both updates permanent; if one fa
both fail, then therollback method is called, restoring the values that exist
before the updates were executed.

Most JDBC drivers will support transactions. In fact, a JDBC-compli
driver must support transactions.DatabaseMetaData supplies information
describing the level of transaction support a DBMS provides.

JAVA.SQL.CONNECTION20

ging
tabase
 what
am-
saction
ld that
ill be

S to
 fol-

 con-
ng
e one
e any
f iso-
d and
eed for
about
orted

el
e. A
n
. To
 set it
hang-
for it
o

2.1.8 Transaction Isolation Levels

If a DBMS supports transaction processing, it will have some way of mana
potential conflicts that can arise when two transactions are operating on a da
at the same time. A user can specify a transaction isolation level to indicate
level of care the DBMS should exercise in resolving potential conflicts. For ex
ple, what happens when one transaction changes a value and a second tran
reads that value before the change has been committed or rolled back? Shou
be allowed, given that the changed value read by the second transaction w
invalid if the first transaction is rolled back? A JDBC user can instruct the DBM
allow a value to be read before it has been committed (“dirty reads”) with the
lowing code, wherecon is the current connection:

con.setTransactionIsolation(TRANSACTION_READ_UNCOMMITTED);

The higher the transaction isolation level, the more care is taken to avoid
flicts. TheConnection interface defines five levels, with the lowest specifyi
that transactions are not supported at all and the highest specifying that whil
transaction is operating on a database, no other transactions may mak
changes to the data read by that transaction. Typically, the higher the level o
lation, the slower the application executes (due to increased locking overhea
decreased concurrency between users). The developer must balance the n
performance with the need for data consistency when making a decision
what isolation level to use. Of course, the level that can actually be supp
depends on the capabilities of the underlying DBMS.

When a newConnection object is created, its transaction isolation lev
depends on the driver, but normally it is the default for the underlying databas
user may call the methodsetIsolationLevel to change the transaction isolatio
level, and the new level will be in effect for the rest of the connection session
change the transaction isolation level for just one transaction, one needs to
before the transaction begins and reset it after the transaction terminates. C
ing the transaction isolation level during a transaction is not recommended,
will trigger an immediate call to the methodcommit, causing any changes up t
that point to be made permanent.

JAVA.SQL.DRIVERMANAGER 21

al
to-
g of

en
andles
dition,

nt-

ram-

 to call

d

 class
er
3
DriverManager

This overview is excerpted fromJDBC™ Database Access with Java™: A Tutori
and Annotated Reference, currently in progress at JavaSoft. This book, both a tu
rial and the definitive reference manual for JDBC, will be published in the sprin
1997 by Addison-Wesley Publishing Company as part of the Java series.

3.1 Overview

THE DriverManager class is the management layer of JDBC, working betwe
the user and the drivers. It keeps track of the drivers that are available and h
establishing a connection between a database and the appropriate driver. In ad
theDriverManager class attends to things like driver login time limits and the pri
ing of log and tracing messages.

For simple applications, the only method in this class that a general prog
mer needs to use directly isDriverManager.getConnection. As its name implies,
this method establishes a connection to a database. JDBC allows the user
theDriverManager methodsgetDriver, getDrivers, andregisterDriver as well
as theDriver methodconnect, but in most cases it is better to let theDriverMan-

ager class manage the details of establishing a connection.

3.1.1 Keeping Track of Available Drivers

The DriverManager class maintains a list ofDriver classes that have registere
themselves by calling the methodDriverManager.registerDriver. All Driver

classes should be written with a static section that creates an instance of the
and then registers it with theDriverManager class when it is loaded. Thus, a us
would not normally callDriverManager.registerDriver directly; it should be

JAVA.SQL.DRIVERMANAGER22

er is

 be

e

r

ment
to call
d

ded

d.
hich

 or
called automatically by a driver when it is loaded. ADriver class is loaded, and
therefore automatically registered with theDriverManager, in two ways:

1. By calling the methodClass.forName. This explicitly loads the driver class.
Since it does not depend on any external setup, this way of loading a driv
recommended. The following code loads the classacme.db.Driver:

Class.forName("acme.db.Driver");

If acme.db.Driver has been written so that loading it causes an instance to
created and also callsDriverManager.registerDriver with that instance as
the parameter (as it should do), then it is in theDriverManager’s list of drivers
and available for creating a connection.

2. By adding the driver to thejava.lang.System propertyjdbc.drivers. This is
a list of driver classnames, separated by colons, that theDriverManager class
loads. When theDriverManager class is intialized, it looks for the system
propertyjdbc.drivers, and if the user has entered one or more drivers, th
DriverManager class attempts to load them. The following code illustrates
how a programmer might enter three driver classes in~/.hotjava/properties

(HotJava loads these into the system properties list on startup):

jdbc.drivers=foo.bah.Driver:wombat.sql.Driver:bad.test.ourDriver;

The first call to aDriverManager method will automatically cause these drive
classes to be loaded.

Note that this second way of loading drivers requires a preset environ
that is persistent. If there is any doubt about that being the case, it is safer
the methodClass.forName to explicitly load each driver. This is also the metho
to use to bring in a particular driver since once theDriverManager class has been
initialized, it will never recheck thejdbc.drivers property list.

 In both of the cases listed above, it is the responsibility of the newly-loa
Driver class to register itself by callingDriverManager.registerDriver. As
mentioned above, this should be done automatically when the class is loade

For security reasons, the JDBC management layer will keep track of w
class loader provided which driver. Then when theDriverManager class is open-
ing a connection, it will use only drivers that come from the local file system
from the same class loader as the code issuing the request for a connection.

JAVA.SQL.DRIVERMANAGER 23

hen a

on-

ble of
ote
-to-

r. In
se the
the

ere

m the

ec-

ure
s of

p a
3.1.2 Establishing a Connection

Once theDriver classes have been loaded and registered with theDriverManager

class, they are available for establishing a connection with a database. W
request for a connection is made with a call to theDriverManager.getConnection

method, theDriverManager tests each driver in turn to see if it can establish a c
nection.

It may sometimes be the case that more than one JDBC driver is capa
connecting to a given URL. For example, when connecting to a given rem
database, it might be possible to use a JDBC-ODBC bridge driver, a JDBC
generic-network-protocol driver, or a driver supplied by the database vendo
such cases, the order in which the drivers are tested is significant becau
DriverManager will use the first driver it finds that can successfully connect to
given URL.

First theDriverManager tries to use each of the drivers in the order they w
registered. (The drivers listed injdbc.drivers are always registered first.) It will
skip any drivers which are untrusted code, unless they have been loaded fro
same source as the code that is trying to open the connection.

It tests the drivers by calling the methodDriver.connect on each one in turn,
passing them the URL that the user originally passed to the methodDriverMan-

ager.getConnection. The first driver that recognizes the URL makes the conn
tion.

At first glance this may seem inefficient, but it requires only a few proced
calls and string comparisons per connection since it is unlikely that dozen
drivers will be loaded concurrently.

The following code is an example of all that is normally needed to set u
connection with a driver such as a JDBC-ODBC bridge driver:

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver"); //loads the driver

String url = "jdbc:odbc:fred";

DriverManager.getConnection(url, "userID", "passwd");

JAVA.SQL.DRIVERMANAGER24

JAVA.SQL.STATEMENT 25

al
to-
g of

 actu-
ng

s: a
ers; a
h or
o

 and
g

can be
4
Statement

This overview is excerpted fromJDBC™ Database Access with Java™: A Tutori
and Annotated Reference, currently in progress at JavaSoft. This book, both a tu
rial and the definitive reference manual for JDBC, will be published in the sprin
1997 by Addison-Wesley Publishing Company as part of the Java series.

4.1 Overview

A Statement object is used to send SQL statements to a database. There are
ally three kinds ofStatement objects, all of which act as containers for executi
SQL statements on a given connection:Statement, PreparedStatement, which
inherits fromStatement, andCallableStatement, which inherits fromPrepared-
Statement. They are specialized for sending particular types of SQL statement
Statement object is used to execute a simple SQL statement with no paramet
PreparedStatement object is used to execute a precompiled SQL statement wit
without IN parameters; and aCallableStatement object is used to execute a call t
a database stored procedure.

TheStatement interface provides basic methods for executing statements
retrieving results. ThePreparedStatement interface adds methods for dealin
with IN parameters;CallableStatement adds methods for dealing with OUT
parameters.

4.1.1 CreatingStatement Objects

Once a connection to a particular database is established, that connection
used to send SQL statements. AStatement object is created with theConnection
methodcreateStatement, as in the following code fragment:

JAVA.SQL.STATEMENT26

 argu-

QL
-

gle

 So in
r-

i-

 in

unt),
e-
ble,

exe-

 com-
Connection con = DriverManager.getConnection(url, "sunny", "");

Statement stmt = con.createStatement();

The SQL statement that will be sent to the database is supplied as the
ment to one of the methods for executing aStatement object:

ResultSet rs = stmt.executeQuery(“SELECT a, b, c FROM Table2);

4.1.2 ExecutingStatement Objects

TheStatement interface provides three different methods for executing S
statements,executeQuery, executeUpdate, andexecute. The one to use is deter
mined by what the SQL statement produces.

The methodexecuteQuery is designed for statements that produce a sin
result set. For the sake of clarity, we will distinguish between the termsreturn
value, which is what the execution of a method returns, andresult, which is what
the SQL statement produces. For example, the methodexecuteQuery returns a
ResultSet object. The SQL statement that it executes produces a result set.
this case, the return value (aResultSet object which contains the result set gene
ated by the SQL statement) is the same as the result.

The situation is different for the methodexecuteUpdate, however. It is used
to executeINSERT, UPDATE, orDELETE statements and also SQL DDL (Data Defin
tion Language) statements likeCREATE TABLE andDROP TABLE. The result of an
INSERT, UPDATE, or DELETE statement is a modification of one or more columns
zero or more rows in a table. Thereturn value of executeUpdate is an integer indi-
cating the number of rows that were affected (referred to as the update co
which is quite different from theresults of executing an update statement. A stat
ment likeCREATE TABLE presents yet another situation; it produces a new ta
which is its result, but it returns nothing. In this case, the methodexecuteUpdate

returns zero. Consequently, when zero is the return value forexecuteUpdate, it
can mean one of two things: 1) the SQL statement executed was anINSERT,
UPDATE, or DELETE statement that affected no rows, or 2) the SQL statement
cuted was a DDL statement.

All of the methods for executing statements close the callingStatement

object’s current result set if there is one open. This means that one needs to
plete any processing of the currentResultSet object before re-executing aState-
ment object.

JAVA.SQL.STATEMENT 27

 to the

recom-

 may
na-
for

ures or
tion
edure
is
, then
re will

, it
For

 using

re

mpli-

n
 thing

f

It should be noted that thePreparedStatement interface, which inherits all of
the methods in theStatement interface, has its own versions of the methodsexe-

cuteQuery, executeUpdate and execute. Statement objects do not themselves
contain an SQL statement; therefore, one must be provided as the argument
Statement.execute methods. PreparedStatement objects do not supply an SQL
statement as a parameter to these methods because they already contain a p
piled SQL statement.CallableStatement objects inherit thePreparedStatement
forms of these methods. Using a query parameter withPrepredStatement or
CallableStatement versions of these methods will cause anSQLException to be
thrown.

4.1.3 Using the MethodExecute

Theexecute method should be used only when it is possible that a statement
return more than oneResultSet object, more than one update count, or a combi
tion of ResultSet objects and update counts. These multiple possibilities
results, though rare, are possible when one is executing certain stored proced
dynamically executing an unknown SQL string (that is, unknown to the applica
programmer at compile time). For example, a user might execute a stored proc
(using aCallableStatement object—see Section 7, “CallableStatement,” of th
JDBC Guide), and that stored procedure could perform an update, then a select
an update, then a select, and so on. Typically someone using a stored procedu
know what it returns.

Because the methodexecute handles the cases that are out of the ordinary
is no surprise that retrieving its results requires some special handling.
instance, suppose it is known that a procedure returns two result sets. After
the methodexecute to execute the procedure, one must call the methodgetRe-

sultSet to get the first result set and then the appropriategetXXX methods to
retrieve values from it. To get the second result set, one needs to callgetMoreRe-

sults and thengetResultSet a second time. If it is known that a procedu
returns an update count, the methodgetUpdateCount is called.

Those cases where one does not know what will be returned are more co
cated. The methodexecute returnstrue if the result is aResultSet object and
false if it is a Javaint. If it returns anint, that means that the result is either a
update count or that the statement executed was a DDL command. The first
to do after calling the methodexecute, is to call eithergetResultSet or getUp-
dateCount. The methodgetResultSet is called to get what might be the first o

JAVA.SQL.STATEMENT28

that

ethod
a
re
llow-

s

hat

t
call the
re

 all the
two or moreResultSet objects; the methodgetUpdateCount is called to get what
might be the first of two or more update counts.

When the result of an SQL statement is not a result set, the methodgetRe-

sultSet will return null. This can mean that the result is an update count or
there are no more results. The only way to find out what thenull really means in
this case is to call the methodgetUpdateCount, which will return an integer. This
integer will be the number of rows affected by the calling statement or-1 to indi-
cate either that the result is a result set or that there are no results. If the m
getResultSet has already returnednull, which means that the result is not
ResultSet object, then a return value of-1 has to mean that there are no mo
results. In other words, there are no results (or no more results) when the fo
ing is true:

((stmt.getResultSet() == null) && (stmt.getUpdateCount() == -1))

If one has called the methodgetResultSet and processed theResultSet
object it returned, it is necessary to call the methodgetMoreResults to see if there
is another result set or update count. IfgetMoreResults returnstrue, then one
needs to again callgetResultSet to actually retrieve the next result set. A
already stated above, ifgetResultSet returnsnull, one has to callgetUpdate-
Count to find out whethernull means that the result is an update count or t
there are no more results.

When getMoreResults returns false, it means that the SQL statemen
returned an update count or that there are no more results. So one needs to
methodgetUpdateCount to find out which is the case. In this situation, there a
no more results when the following is true:

((stmt.getMoreResults() == false) && (stmt.getUpdateCount() == -1))

The code below demonstrates one way to be sure that one has accessed
result sets and update counts generated by a call to the methodexecute:

stmt.execute(queryStringWithUnknownResults);

while(true) {

int rowCount = stmt.getUpdateCount();

if(rowCount > 0) { // this is an update count

System.out.println("Rows changed = " + count);

stmt.getMoreResults();

continue;

JAVA.SQL.STATEMENT 29

thin it
dered
. For

e
the

 state-
differ-
en the

it-
}

if(rowCount = 0) { // DDL command or 0 updates

System.out.println(" No rows changed or statement was DDL

command”);

stmt.getMoreResults();

continue;

}

// if we have gotten this far, we have either a result set

// or no more results

ResultSet rs = stmt.getResultSet;

if(rs != null) {

. . . // use metadata to get info about result set columns

while(rs.next()) {

. . . // process results

stmt.getMoreResults();

continue;

}

break; // there are no more results

}

4.1.4 Statement Completion

When a connection is in auto-commit mode, the statements being executed wi
are committed or rolled back when they are completed. A statement is consi
complete when it has been executed and all its results have been returned
almost all cases, this occurs when one calls the methodexecuteQuery (and retrieves
the ResultSet rows) or the methodexecuteUpdate. In the rare cases where th
methodexecute is called, however, a statement is not complete until all of
result sets or update counts it generated have been retrieved.

Some DBMSs treat each statement in a stored procedure as a separate
ment; others treat the entire procedure as one compound statement. This
ence becomes important when auto-commit is enabled because it affects wh
methodcommit is called. In the first case, each statement is individually comm
ted; in the second, all are committed together.

JAVA.SQL.STATEMENT30

ntax.
iffer-
t the

ent and

arac-
lash

hich
tax at

s an

ver-
utting
d
nc-
4.1.5 SQL Escape Syntax inStatement Objects

Statement objects may contain SQL statements that use SQL escape sy
Escape syntax signals the driver that the code within it should be handled d
ently. The driver will scan for any escape syntax and translate it into code tha
particular database understands. This makes escape syntax DBMS-independ
allows a programmer to use features that might not otherwise be available.

An escape clause is demarcated by curly braces and a key word:

{keyword . . . parameters . . . }

The keyword indicates the kind of escape clause, as shown below.

• escape for LIKE escape characters

The characters “%” and “_” work like wild cards in SQLLIKE clauses
(“%” matches zero or more characters, and “_” matches exactly one ch
ter). In order to interpret them literally, they can be preceded by a backs
(“\”), which is a special escape character in strings. One can specify w
character to use as the escape character by including the following syn
the end of a query:

{escape 'escape-character'}

For example, the following query, using the backslash character a
escape character, finds identifier names that begin with an underbar:

stmt.executeQuery(“SELECT name FROM Identifiers

 WHERE Id LIKE ‘_%’ {escape ‘\’};

• fn for scalar functions

Almost all DBMSs have numeric, string, time, date, system, and con
sion functions on scalar values. One of these functions can be used by p
it in escape syntax with the keywordfn followed by the name of the desire
function and its arguments. For example, the following code calls the fu
tion concat with two arguments to be concatenated:

{fn concat(“Hot”, “Java”)};

JAVA.SQL.STATEMENT 31

wing

if-

ple,
e

iate

ter-
sing

ion.
 fol-

rep-

DBC
The name of the current database user can be obtained with the follo
syntax:

{fn user()};

Scalar functions may be supported by different DBMSs with slightly d
ferent syntax, and they may not be supported by all drivers. VariousData-

baseMetaData methods will list the functions that are supported. For exam
the methodgetNumericFunctions returns a comma-separated list of th
names of numeric functions, the methodgetStringFunctions returns string
functions, and so on.

The driver will either map the escaped function call into the appropr
syntax or implement the function directly itself.

• d, t, andts for date and time literals

DBMSs differ in the syntax they use for date, time, and timestamp li
als. JDBC supports ISO standard format for the syntax of these literals, u
an escape clause that the driver must translate to the DBMS representat

For example, a date is specified in a JDBC SQL statement with the
lowing syntax:

{d ‘yyyy-mm-dd’}

In this syntax,yyyy is the year,mm is the month, anddd is the day. The
driver will replace the escape clause with the equivalent DBMS-specific
resentation. For example, the driver might replace{d 1999-02-28} with '28-

FEB-99' if that is the appropriate format for the underlying database.
There are analogous escape clauses forTIME andTIMESTAMP:

{t ‘hh:mm:ss’}

{ts ‘yyyy-mm-dd hh:mm:ss.f . . .’}

The fractional seconds (.f . . .) portion of theTIMESTAMP can be omit-
ted.

• call or ? = call for stored procedures

If a database supports stored procedures, they can be invoked from J
with the following syntax:

JAVA.SQL.STATEMENT32

em is

n 7,

mmar

n
ut
nor-

ady
{call procedure_name[(?, ?, . . .)]}

or, where a procedure returns a result parameter:

{? = call procedure_name[(?, ?, . . .)]}

The square brackets indicate that the material enclosed between th
optional. They are not part of the syntax.

Input arguments may be either literals or parameters. See Sectio
“CallableStatement,” of thisJDBC Guide for more information.

One can call the methodDatabaseMetaData.supportsStoredProcedures
to see if the database supports stored procedures.

• oj for outer joins

The syntax for an outer join is

{oj outer-join}

whereouter-join is of the form

table LEFT OUTER JOIN {table | outer-join} ON search-condition

Outer joins are an advanced feature, and one can check the SQL gra
for an explanation of them. JDBC provides threeDatabaseMetaData methods
for determining the kinds of outer joins a driver supports:supportsOuter-

Joins, supportsFullOuterJoins, andsupportsLimitedOuterJoins.

The methodStatement.setEscapeProcessing turns escape processing o
or off; the default is for it to be on. A programmer might turn it off to c
down on processing time when performance is paramount, but it would
mally be turned on. It should be noted thatsetEscapeProcessing does not
work for PreparedStatement objects because the statement may have alre
been sent to the database before it can be called. SeePreparedStatement

regarding precompilation.

JAVA.SQL.RESULTSET 33

o-
 a
the
ies.

QL

orre-

ent
5
ResultSet

THIS overview is excerpted fromJDBC™ Database Access with Java™: A Tut
rial and Annotated Reference, currently in progress at JavaSoft. This book, both
tutorial and the definitive reference manual for JDBC, will be published in
spring of 1997 by Addison-Wesley Publishing Company as part of the Java ser

5.1 Overview

A ResultSet contains all of the rows which satisfied the conditions in an S
statement, and it provides access to the data in those rows through a set ofget meth-
ods that allow access to the various columns of the current row. TheResult-

Set.next method is used to move to the next row of theResultSet, making the next
row become the current row.

The general form of a result set is a table with column headings and the c
sponding values returned by a query. For example, if your query isSELECT a, b,

c FROM Table1, your result set will have the following form:

 a b c
 -------- --------- --------
 12345 Cupertino CA
 83472 Redmond WA
 83492 Boston MA

The following code fragment is an example of executing an SQL statem
that will return a collection of rows, with column 1 as anint, column 2 as a
String, and column 3 as an array of bytes:

java.sql.Statement stmt = conn.createStatement();

JAVA.SQL.RESULTSET34

rsor

-
w

oned
d as a
ned by

 these
rows
pdate

cur-
t for
umn

te the
of a
fol-
ResultSet r = stmt.executeQuery("SELECT a, b, c FROM Table1");

while (r.next())

{

// print the values for the current row.

int i = r.getInt("a");

String s = r.getString("b");

float f = r.getFloat("c");

System.out.println(“ROW = " + i + " " + s + " " + f);

}

5.1.1 Rows and Cursors

A ResultSet maintains a cursor which points to its current row of data. The cu
moves down one row each time the methodnext is called. Initially it is positioned
before the first row, so that the first call tonext puts the cursor on the first row, mak
ing it the current row.ResultSet rows are retrieved in sequence from the top ro
down as the cursor moves down one row with each successive call tonext.

A cursor remains valid until theResultSet object or its parentStatement
object is closed.

In SQL, the cursor for a result table is named. If a database allows positi
updates or positioned deletes, the name of the cursor needs to be supplie
parameter to the update or delete command. This cursor name can be obtai
calling the methodgetCursorName.

Note that not all DBMSs support positioned update and delete. TheData-

baseMetaData.supportsPositionedDelete and supportsPositionedUpdate

methods can be used to discover whether a particular connection supports
operations. When they are supported, the DBMS/driver must ensure that
selected are properly locked so that positioned updates do not result in u
anomalies or other concurrency problems.

5.1.2 Columns

ThegetXXX methods provide the means for retrieving column values from the
rent row. Within each row, column values may be retrieved in any order, bu
maximum portability, one should retrieve values from left to right and read col
values only once.

Either the column name or the column number can be used to designa
column from which to retrieve data. For example, if the second column
ResultSet objectrs is named “title” and stores values as strings, either of the
lowing will retrieve the value stored in that column:

JAVA.SQL.RESULTSET 35

 1.

peci-
ents to
l-

ay for

t has
s the

, one
ieved.

ing
ample,
ng

g

se-
String s = rs.getString(“title”);

String s = rs.getString(2);

Note that columns are numbered from left to right starting with column
Also, column names used as input togetXXX methods are case insensitive.

The option of using the column name was provided so that a user who s
fies column names in a query can use those same names as the argum
getXXX methods. If, on the other hand, theselect statement does not specify co
umn names (as in “select * from table1” or in cases where a column is
derived), column numbers should be used. In such situations, there is no w
the user to know for sure what the column names are.

In some cases, it is possible for a SQL query to return a result set tha
more than one column with the same name. If a column name is used a
parameter to agetXXX method,getXXX will return the value of the first matching
column name. Thus, if there are multi0ple columns with the same name
needs to use a column index to be sure that the correct column value is retr
It may also be slightly more efficient to use column numbers.

Information about the columns in aResultSet is available by calling the
methodResultSet.getMetaData. TheResultSetMetaData object returned gives
the number, types, and properties of itsResultSet object’s columns.

If the name of a column is known, but not its index, the methodfindColumn

can be used to find the column number.

5.1.3 Data Types and Conversions

For thegetXXX methods, the JDBC driver attempts to convert the underly
data to the specified Java type and then returns a suitable Java value. For ex
if the getXXX method isgetString, and the data type of the data in the underlyi
database isVARCHAR, the JDBC driver will convertVARCHAR to JavaString. The
return value ofgetString will be a JavaString object.

The following table shows which SQL types agetXXX method isallowed to
retrieve and which SQL types arerecommended for it to retrieve. A smallx indi-
cates a legalgetXXX method for a particular data type; a largeX indicates the rec-
ommendedgetXXX method for a data type. For example, anygetXXX method
exceptgetBytes or getBinaryStream can be used to retrieve the value of aLONG-

VARCHAR, butgetAsciiStream or getUnicodeStream are recommended, dependin
on which data type is being returned. The methodgetObject will return any data
type as a JavaObject and is useful when the underlying data type is a databa

JAVA.SQL.RESULTSET36

pt any

e.
.

specific abstract type or when a generic application needs to be able to acce
data type.

 Use ofResultSet.getXXX methods to retrieve common SQL data types.
An “x” indicates that thegetXXX method may legally be used to retrieve the given SQL typ
An “X” indicates that thegetXXX method is recommended for retrieving the given SQL type

T
I
N
Y
I
N
T

S
M
A
L
L
I
N
T

I
N
T
E
G
E
R

B
I
G

N
T

R
E
A
L

F
L
O
A
T

D
O
U
B
L
E

D
E
C
I
M
A
L

N
U
M
E
R
I
C

B
I
T

C
H
A
R

V
A
R
C
H
A
R

L
O
N
G
V
A
R
C
H
A
R

B
I
N
A
R
Y

V
A
R
B
I
N
A
R
Y

L
O
N
G
V
A
R
B
I
N
A
R
Y

D
A
T
E

T
I
M
E

T
I
M
E
S
T
A
M
P

getByte X x x x x x x x x x x x x

getShort x X x x x x x x x x x x x

getInt x x X x x x x x x x x x x

getLong x x x X x x x x x x x x x

getFloat x x x x X x x x x x x x x

getDouble x x x x x X X x x x x x x

getBigDecimal x x x x x x x X X x x x x

getBoolean x x x x x x x x x X x x x

getString x x x x x x x x x x X X x x x x x x x

getBytes X X x

getDate x x x X x

getTime x x x X x

getTimestamp x x x x X

getAsciiStream x x X x x x

getUnicodeStream x xX x x x

getBinaryStream x x X

getObject x x x x x x x x x x x x x x x x x x x

JAVA.SQL.RESULTSET 37

p

-size

cessed

 on

ith a

m

rs.

ac-

 can
5.1.4 Using Streams for Very Large Row Values

ResultSet makes it possible to retrieve arbitrarily largeLONGVARBINARY orLONGVAR-
CHAR data. The methodsgetBytes andgetString return data as one large chunk (u
to the limits imposed by the return value ofStatement.getMaxFieldSize). How-
ever, it may be more convenient to retrieve very large data in smaller, fixed
chunks. This is done by having theResultSet class returnjava.io.Input streams
from which data can be read in chunks. Note that these streams must be ac
immediately because they will be closed automatically on the nextgetXXX call on
ResultSet. (This behavior is imposed by underlying implementation constraints
large blob access.)

The JDBC API has three separate methods for getting streams, each w
different return value:

• getBinaryStream returns a stream which simply provides the raw bytes fro
the database without any conversion.

• getAsciiStream returns a stream which provides one-byte ASCII characte

• getUnicodeStream returns a stream which provides two-byte Unicode char
ters.

Note that this differs from Java streams, which return untyped bytes and
(for example) be used for both ASCII and Unicode characters.

The following code gives an example of usinggetAsciiStream:

java.sql.Statement stmt = con.createStatement();

ResultSet r = stmt.executeQuery(“SELECT x FROM Table2”);

// Now retrieve the column 1 results in 4 K chunks:

byte buff = new byte[4096];

while (r.next()) {

Java.io.InputStream fin = r.getAsciiStream(1);

for (;;) {

int size = fin.read(buff);

if (size == -1) { // at end of stream

break;

}

// Send the newly-filled buffer to some ASCII output stream:

output.write(buff, 0, size);

}

JAVA.SQL.RESULTSET38

n

s

f
ated).
er a
addi-
pdate

at an
ion of
 gen-

re

s.
}

5.1.5 NULL Result Values

To determine if a given result value isSQL NULL, one must first read the column
and then use theResultSet.wasNull method to discover if the read returned a
SQLNULL.

When one has read an SQL NULL using one of theResultSet.getXXX meth-
ods, the methodwasNull will return one of the following:

• A Javanull value for thosegetXXX methods that return Java objects (method
such asgetString, getBigDecimal, getBytes, getDate, getTime, getTimes-

tamp, getAsciiStream, getUnicodeStream, getBinaryStream, getObject).

• A zero value forgetByte, getShort, getInt, getLong, getFloat, andgetDou-
ble.

• A false value forgetBoolean.

5.1.6 Optional or Multiple Result Sets

Normally SQL statements are executed using eitherexecuteQuery (which
returns a singleResultSet) or executeUpdate (which can be used for any kind o
database modification statement and which returns a count of the rows upd
However, under some circumstances an application may not know wheth
given statement will return a result set until the statement has executed. In
tion, some stored procedures may return several different result sets and/or u
counts.

To accommodate these situations, JDBC provides a mechanism so th
application can execute a statement and then process an arbitrary collect
result sets and update counts. This mechanism is based on first calling a fully
eralexecute method, and then calling three other methods,getResultSet, getUp-
dateCount, andgetMoreResults. These methods allow an application to explo
the statement results one at a time and to determine if a given result was aResult-

Set or an update count.
You do not need to do anything to close aResultSet; it is automatically

closed by theStatement that generated it when thatStatement is closed, is re-exe-
cuted, or is used to retrieve the next result from a sequence of multiple result

JAVA.SQL.PREPAREDSTATEMENT 39

t

o-
 a
the
ies.

spec-
estion
tion
t

ter
uted

ded
 for IN
6
PreparedStatemen

THIS overview is excerpted fromJDBC™ Database Access with Java™: A Tut
rial and Annotated Reference, currently in progress at JavaSoft. This book, both
tutorial and the definitive reference manual for JDBC, will be published in
spring of 1997 by Addison-Wesley Publishing Company as part of the Java ser

6.1 Overview

The PreparedStatement interface inherits fromStatement and differs from it in
two ways:

1. Instances ofPreparedStatement contain an SQL statement that has already
been compiled. This is what makes a statement “prepared.”

2. The SQL statement contained in aPreparedStatement object may have one or
more IN parameters. An IN parameter is a parameter whose value is not
ified when the SQL statement is created. Instead the statement has a qu
mark (“?”) as a placeholder for each IN parameter. A value for each ques
mark must be supplied by the appropriatesetXXX method before the statemen
is executed.

BecausePreparedStatement objects are precompiled, their execution can be fas
than that ofStatement objects. Consequently, an SQL statement that is exec
many times is often created as aPreparedStatement object to increase efficiency.

 Being a subclass ofStatement, PreparedStatement inherits all the function-
ality of Statement. In addition, it adds a whole set of methods which are nee
for setting the values to be sent to the database in place of the placeholders

JAVA.SQL.PREPAREDSTATEMENT40

 with a

 IN

d for

 first

sed for
thod

ent is

e
 been
parameters. Also, the three methodsexecute, executeQuery, andexecuteUpdate
are modified so that they take no argument. TheStatement forms of these meth-
ods (the forms that take an SQL statement parameter) should never be used
PreparedStatement object.

6.1.1 CreatingPreparedStatement Objects

The following code fragment, wherecon is a Connection object, creates aPre-
paredStatement object containing an SQL statement with two placeholders for
parameters:

PreparedStatement pstmt = con.prepareStatement(

"UPDATE table4 SET m = ? WHERE x = ?");

The objectpstmt now contains the statement"UPDATE table4 SET m = ?

WHERE x = ?", which has already been sent to the DBMS and been prepare
execution.

6.1.2 PassingIN Parameters

Before aPreparedStatement object is executed, the value of each? parameter
must be set. This is done by calling asetXXX method, whereXXX is the appropri-
ate type for the parameter. For example, if the parameter has a Java type oflong,
the method to use issetLong. The first argument to thesetXXX methods is the
ordinal position of the parameter to be set, and the second argument is thevalue to
which the parameter is to be set. For example, the following code sets the
parameter to123456789 and the second parameter to100000000:

pstmt.setLong(1, 123456789);

pstmt.setLong(2, 100000000);

Once a parameter value has been set for a given statement, it can be u
multiple executions of that statement until it is cleared by a call to the me
clearParameters.

In the default mode for a connection (auto-commit enabled), each statem
commited or rolled back automatically when it is completed.

The samePreparedStatement object may be executed multiple times if th
underlying database and driver will keep statements open after they have

JAVA.SQL.PREPAREDSTATEMENT 41

rove

e

d

 the
ping
 this
wing

each
type
an SQL

 one

le, it
 by the
committed. Unless this is the case, however, there is no point in trying to imp
performance by using aPreparedStatement object in place of aStatement object.

Usingpstmt, thePreparedStatement object created above, the following cod
illustrates setting values for the two parameter placeholders and executingpstmt

10 times. As stated above, for this to work, the database must not closepstmt. In
this example, the first parameter is set to“Hi” and remains constant. The secon
parameter is set to a different value each time around thefor loop, starting with0
and ending with9.

pstmt.setString(1, "Hi");

for (int i = 0; i < 10; i++) {

pstmt.setInt(2, i);

int rowCount = pstmt.executeUpdate();

}

6.1.3 Data Type Conformance on IN Parameters

TheXXX in asetXXX method is a Java type. It is implicitly an SQL type because
driver will map the Java type to its corresponding SQL type (following the map
specified in the table in Section 8.5.2 of “Mapping Java and SQL Types” in
JDBC Guide) and send that SQL type to the database. For example, the follo
code fragment sets the second parameter of thePreparedStatement objectpstmt to
44, with a Java type ofshort:

pstmt.setShort(2, 44);

The driver will send 44 to the database as an SQLSMALLINT, which is the standard
mapping from a Javashort.

It is the programmer’s responsibility to make sure that the Java type of
IN parameter maps to an SQL type that is compatible with the SQL data
expected by the database. Consider the case where the database expects
SMALLINT. If the methodsetByte is used, the driver will send an SQLTINYINT to
the database. This will probably work because many databases convert from
related type to another, and generally aTINYINT can be used anywhere aSMALLINT
is used. However, for an application to work with the most databases possib
is best to use Java types that correspond to the exact SQL types expected
database. If the expected SQL type isSMALLINT, usingsetShort instead ofset-
Byte will make an application more portable.

JAVA.SQL.PREPAREDSTATEMENT42

QL
t,

data-

 type

ection

n
 situ-
 By
 con-
shows

ype of

hod

of
ata in
 Java
eated
as the
6.1.4 UsingsetObject

A programmer can explicitly convert an input parameter to a particular S
type by using the methodsetObject. This method can take a third argumen
which specifies the target SQL type. The driver will convert the JavaObject to
the specified SQL type before sending it to the database.

If no SQL type is given, the driver will simply map the JavaObject to its
default SQL type (using the table in Section 8.5.4) and then send it to the
base. This is similar to what happens with the regularsetXXX methods; in both
cases, the driver maps the Java type of the value to the appropriate SQL
before sending it to the database. The difference is that thesetXXX methods use
the standard mapping from Java types to SQL types (see the table in S
8.5.2), whereas thesetObject method uses the mapping from JavaObject types
to SQL types (see the table in Section 8.5.4).

The capability of the methodsetObject to accept any Java object allows a
application to be generic and accept input for a parameter at run time. In this
ation the type of the input is not known when the application is compiled.
usingsetObject, the application can accept any Java object type as input and
vert it to the SQL type expected by the database. The table in Section 8.5.5
all the possible conversions thatsetObject can perform.

6.1.5 SendingSQL NULL as an IN parameter

ThesetNull method allows a programmer to send an SQLNULL value to the data-
base as an IN parameter. Note, however, that one must still specify the SQL t
the parameter.

An SQL NULL will also be sent to the database when a Javanull value is
passed to asetXXX method (if it takes Java objects as arguments). The met
setObject, however, can take anull value only if the SQL type is specified.

6.1.6 Sending Very Large IN Parameters

The methodssetBytes andsetString are capable of sending unlimited amounts
data. Sometimes, however, programmers prefer to pass in large blobs of d
smaller chunks. This can be accomplished by setting an IN parameter to a
input stream. When the statement is executed, the JDBC driver will make rep
calls to this input stream, reading its contents and transmitting those contents
actual parameter data.

JAVA.SQL.PREPAREDSTATEMENT 43

ams:

 other
his is
fore any

le as
JDBC provides three methods for setting IN parameters to input stre
setBinaryStream for streams containing uninterpreted bytes,setAsciiStream for
streams containing ASCII characters, andsetUnicodeStream for streams contain-
ing Unicode characters. These methods take one more argument than the
setXXX methods because the total length of the stream must be specified. T
necessary because some databases need to know the total transfer size be
data is sent.

The following code illustrates using a stream to send the contents of a fi
an IN parameter:

java.io.File file = new java.io.File(“/tmp/data”);

int fileLength = file.length();

java.io.InputStream fin = new java.io.FileInputStream(file);

java.sql.PreparedStatement pstmt = con.prepareStatement(

“UPDATE Table5 SET stuff = ? WHERE index = 4”);

pstmt.setBinaryStream (1, fin, fileLength);

pstmt.executeUpdate();

When the statement executes, the input streamfin will get called repeatedly
to deliver up its data.

JAVA.SQL.PREPAREDSTATEMENT44

JAVA.SQL.CALLABLESTATEMENT 45

t

o-
 a
the
ies.

ard

n
eter,

cape
r the
ed for
). A

ote
y are

:

7
CallableStatemen

THIS overview is excerpted fromJDBC™ Database Access with Java™: A Tut
rial and Annotated Reference, currently in progress at JavaSoft. This book, both
tutorial and the definitive reference manual for JDBC, will be published in
spring of 1997 by Addison-Wesley Publishing Company as part of the Java ser

7.1 Overview

A CallableStatement object provides a way to call stored procedures in a stand
way for all DBMSs. A stored procedure is stored in a database; thecall to the stored
procedure is what aCallableStatement object contains. This call is written in a
escape syntax that may take one of two forms: one form with a result param
and the other without one. (See Section 4, “Statement,” for information on es
syntax.) A result parameter, a kind of OUT parameter, is the return value fo
stored procedure. Both forms may have a variable number of parameters us
input (IN parameters), output (OUT parameters), or both (INOUT parameters
question mark serves as a placeholder for a parameter.

The syntax for invoking a stored procedure in JDBC is shown below. N
that the square brackets indicate that what is between them is optional; the
not themselves part of the syntax.

{call procedure_name[(?, ?, ...)]}

The syntax for a procedure that returns a result parameter is:

{? = call procedure_name[(?, ?, ...)]}

The syntax for a stored procedure with no parameters would look like this

JAVA.SQL.CALLABLESTATEMENT46

edures

hod

-

 SQL
her a

e-

 on

OUT

gister-
{call procedure_name}

Normally, anyone creating aCallableStatement object would already know
that the DBMS being used supports stored procedures and what those proc
are. If one needed to check, however, variousDatabaseMetaData methods will
supply such information. For instance, the methodsupportsStoredProcedures

will return true if the DBMS supports stored procedure calls, and the met
getProcedures will return a description of the stored procedures available.

CallableStatement inheritsStatement methods, which deal with SQL state
ments in general, and it also inheritsPreparedStatement methods, which deal
with IN parameters. All of the methods defined inCallableStatement deal with
OUT parameters or the output aspect of INOUT parameters: registering the
types of the OUT parameters, retrieving values from them, or checking whet
returned value wasSQL NULL.

7.1.1 Creating aCallableStatement Object

CallableStatement objects are created with theConnection methodprepareCall.
The example below creates an instance ofCallableStatement that contains a call to
the stored proceduregetTestData, which has two arguments and no result param
ter:

CallableStatement cstmt = con.prepareCall(

“{call getTestData(?, ?)}”);

Whether the? placeholders are IN, OUT, or INOUT parameters depends
the stored proceduregetTestData.

7.1.2 IN and OUT Parameters

Passing in any IN parameter values to aCallableStatement object is done using the
setXXX methods inherited fromPreparedStatement. The type of the value being
passed in determines whichsetXXX method to use (setFloat to pass in afloat
value, and so on).

If the stored procedure returns OUT parameters, the SQL type of each
parameter must be registered before theCallableStatement object can be exe-
cuted. (This is necessary because some DBMSs require the SQL type.) Re
ing the SQL type is done with the methodregisterOutParameter. Then after the

JAVA.SQL.CALLABLESTATEMENT 47

e-
pping
ther
pe

s the
he
T

m

ame-

ethod

efore
 sup-
e
e-

nd
statement has been executed,CallableStatement’s getXXX methods retrieve the
parameter value. The correctgetXXX method to use is the Java type that corr
sponds to the SQL type registered for that parameter. (The standard ma
from SQL types to Java types is shown in the table in Section 8.5.1.) In o
words,registerOutParameter uses an SQL type (so that it matches the SQL ty
that the database will return), andgetXXX casts this to a Java type.

To illustrate, the following code registers the OUT parameters, execute
stored procedure called bycstmt, and then retrieves the values returned in t
OUT parameters. The methodgetByte retrieves a Java byte from the first OU
parameter, andgetBigDecimal retrieves aBigDecimal object (with three digits
after the decimal point) from the second OUT parameter:

CallableStatement cstmt = con.prepareCall(

“{call getTestData(?, ?)}”);

cstmt.registerOutParameter(1, java.sql.Types.TINYINT);

cstmt.registerOutParameter(2, java.sql.Types.DECIMAL, 3);

cstmt.executeQuery();

byte x = cstmt.getByte(1);

java.math.BigDecimal n = cstmt.getBigDecimal(2, 3);

Unlike ResultSet, CallableStatement does not provide a special mechanis
for retrieving large OUT values incrementally.

7.1.3 INOUT Parameters

A parameter that supplies input as well as accepts output (an INOUT par
ter) requires a call to the appropriatesetXXX method (inherited fromPrepared-
Statement) in addition to a call to the methodregisterOutParameter. The
setXXX method sets a parameter’s value as an input parameter, and the m
registerOutParameter registers its SQL type as an output parameter. ThesetXXX

method provides a Java value which the driver converts to an SQL value b
sending it to the database. The SQL type of this IN value and the SQL type
plied to the methodregisterOutParameter should be the same. Then to retriev
the output value, a correspondinggetXXX method is used. For example, a param
ter whose Java type isbyte should use the methodsetByte to assign the input
value, should supply aTINYINT as the SQL type toregisterOutParameter, and
should usegetByte to retrieve the output value. (Section 8, “Mapping SQL a
Java Types,” gives more information and contains tables of type mappings.)

JAVA.SQL.CALLABLESTATEMENT48

axi-

sing

T
 been

 the

s

The following example assumes that there is a stored procedurereviseTotal

whose only parameter is an INOUT parameter. The methodsetByte sets the
parameter to25, which the driver will send to the database as an SQLTINYINT.
NextregisterOutParameter registers the parameter as an SQLTINYINT. After the
stored procedure is executed, a new SQLTINYINT value is returned, and the
method getByte will retrieve this new value as a Javabyte.

CallableStatement cstmt = con.prepareCall(

“{call reviseTotal(?)}”);

cstmt.setByte(1, 25);

cstmt.registerOutParameter(1, java.sql.Types.TINYINT);

cstmt.executeUpdate();

byte x = cstmt.getByte(1);

7.1.4 Retrieve OUT Parameters after Results

Because of limitations imposed by some DBMSs, it is recommended that for m
mum portability, all of the results generated by the execution of aCallableState-

ment object should be retrieved before OUT parameters are retrieved u
CallableStatement.getXXX methods.

If a CallableStatement object returns multipleResultSet objects (using a
call to the methodexecute), all of the results should be retrieved before OU
parameters are retrieved. In this case, to be sure that all results have
accessed, theStatement methodsgetResultSet, getUpdateCount, andgetMore-
Results need to be called until there are no more results.

After this is done, values from OUT parameters can be retrieved using
CallableStatement.getXXX methods.

7.1.5 Retrieving NULL Values as OUT Parameters

The value returned to an OUT parameter may beSQL NULL. When this happens, the
SQL NULL value will be converted so that the value returned by agetXXX method will
be null, 0, or false, depending on thegetXXX method type. As withResultSet
objects, the only way to know if a value of0 or false was originally SQL NULL is to
test it with the methodwasNull, which returnstrue if the last value read by a
getXXX method wasSQL NULL andfalse otherwise. Section 5, “ResultSet,” contain
more information.

MAPPING SQL AND JAVA TYPES 49

s

o-
 a
the
ies.

e some
types

ious
n SQL

 types.

 they
ectly
 exam-
8
Mapping SQL and Java Type

THIS overview is excerpted fromJDBC™ Database Access with Java™: A Tut
rial and Annotated Reference, currently in progress at JavaSoft. This book, both
tutorial and the definitive reference manual for JDBC, will be published in
spring of 1997 by Addison-Wesley Publishing Company as part of the Java ser

8.1 Overview

Since SQL data types and Java data types are not identical, there needs to b
mechanism for reading and writing data between an application using Java
and a database using SQL types.

To accomplish this, JDBC provides sets ofgetXXX andsetXXX methods, the
methodregisterOutParameter, and the classTypes.

This section brings together information about data types affecting var
classes and interfaces and puts all the tables showing the mappings betwee
types and Java types in one place for easy reference.

8.2 Mapping SQL Data Types into Java

JDBC provides a standard mapping from the common SQL data types to Java
For example, an SQLINTEGER is normally mapped to a Javaint. This supports a
simple interface for reading and writing SQL values as simple Java types.

 The Java types do not need to be exactly isomorphic to the SQL types;
just need to be able to represent them with enough type information to corr
store and retrieve parameters and recover results from SQL statements. For
ple, a JavaString object does not precisely match any of theSQL CHAR types, but it
gives enough type information to representCHAR, VARCHAR, or LONGVARCHAR suc-
cessfully.

MAPPING JAVA AND SQL TYPES50

o Java

trings,

xact

trings
ro-

ding

type
this
a
 read

rs
ey are
m-
8.3 SQL Types

This section describes the common SQL types and how they are mapped t
types.

8.3.1 CHAR, VARCHAR, andLONGVARCHAR

Java programmers do not need to distinguish among the three types of SQL s
CHAR, VARCHAR, andLONGVARCHAR. Each can be expressed as a JavaString, and it is
possible to read and write an SQL statement correctly without knowing the e
data type that was expected.

CHAR, VARCHAR, andLONGVARCHAR could have been mapped to eitherString or
char[], but String is more appropriate for normal use. Also, theString class
makes it easy to convert betweenString andchar[]. There is a method for con-
verting aString object to achar[] and also a constructor for turning achar[]
into aString object.

One issue that had to be addressed is how to handle fixed-length SQL s
of typeCHAR(n). The answer is that JDBC drivers (or the DBMS) perform app
priate padding with spaces. Thus, when aCHAR(n) field is retrieved from the data-
base, the driver will convert it to a JavaString object of lengthn, which may
include some padding spaces at the end. Conversely, when aString object is sent
to aCHAR(n) field, the driver and/or the database will add any necessary pad
spaces to the end of the string to bring it up to lengthn.

The methodResultSet.getString, which allocates and returns a newString
object, is recommended for retrieving data fromCHAR, VARCHAR, andLONGVARCHAR
fields. This is suitable for retrieving normal data, but can be unwieldy if the
SQL LONGVARCHAR is being used to store multimegabyte strings. To handle
case, two methods in theResultSet interface allow programmers to retrieve
LONGVARCHAR value as a Java input stream from which they can subsequently
data in whatever size chunks they prefer. These methods aregetAsciiStream and
getUnicodeStream, which deliver the data stored in aLONGVARCHAR column as a
stream of ASCII or Unicode characters.

8.3.2 DECIMAL and NUMERIC

The SQL data typesDECIMAL andNUMERIC, used to express fixed-point numbe
where absolute precision is required, can be expressed identically in Java. Th
mapped tojava.math.BigDecimal, a Java type that also expresses fixed-point nu
bers with absolute precision. Thejava.math.BigDecimal type provides math oper-

MAPPING SQL AND JAVA TYPES 51

ed

 as

ere
ans
le to

g the
ers to

be
ations to allowBigDecimal types to be added, subtracted, multiplied, and divid
with otherBigDecimal types, with integer types, and with floating point types.

The method recommended for retrievingSQL DECIMAL andSQL NUMERIC values
is ResultSet.getBigDecimal. JDBC also allows access to these SQL types
simpleStrings or arrays ofchar. Thus, Java programmers can usegetString to
receive aNUMERIC or DECIMAL result. However, this makes the common case wh
NUMERIC or DECIMAL are used for currency values rather awkward, since it me
that application writers have to perform math on strings. It is also possib
retrieve these SQL types as any of the Java numeric types.

8.3.3 BINARY, VARBINARY, andLONGVARBINARY

The SQL data types include three versions of raw binary values:BINARY, VARBINARY,
andLONGVARBINARY. They can all be expressed identically asbyte arrays in Java.
Since it is possible to read and write SQL statements correctly without knowin
exactBINARY data type that was expected, there is no need for Java programm
distinguish among them.

The method recommended for retrievingBINARY and VARBINARY values is
ResultSet.getBytes. If a column of typeSQL LONGVARBINARY stores a byte array
that is many megabytes long, however, the methodgetBinaryStream is recom-
mended. Similar to the situation withLONGVARCHAR, this method allows a Java
programmer to retrieve aLONGVARBINARY value as a Java input stream that can
read later in smaller chunks.

8.3.4 BIT

The SQL typeBIT is mapped directly to the Java typeboolean.

8.3.5 TINYINT, SMALLINT, INTEGER, andBIGINT

The SQL typesTINYINT, SMALLINT, INTEGER, andBIGINT are mapped as follows:

SQL TINYINT represents 8-bit values and is mapped to Javabyte.
SQL SMALLINT represents 16-bit values and is mapped to Javashort.
SQL INTEGER represents 32-bit values and is mapped to Javaint.
SQL BIGINT represents 64-bit values and is mapped to Javalong.

MAPPING JAVA AND SQL TYPES52

e

l-

f
 “ze-

,

and

lost.
8.3.6 REAL, FLOAT, andDOUBLE

SQL defines three floating-point data types:REAL, FLOAT, andDOUBLE; whereas Java
defines two:FLOAT andDOUBLE.

SQL REAL is required to support 7 digits of mantissa precision and is
 mapped to Javafloat.
SQL FLOAT andSQL DOUBLE are required to support 15 digits of mantissa
 precision and are mapped to Javadouble.

8.3.7 DATE, TIME, andTIMESTAMP

There are three SQL types relating to time:

• DATE consists of day, month, and year.

• TIME consists of of hours, minutes, and seconds.

• TIMESTAMP consists ofDATE plusTIME plus a nanosecond field.

Because the standard Java classjava.util.Date does not match any of thes
three SQL types exactly (it includes bothDATE andTIME information but has no
nanoseconds), JDBC defines three subclasses ofjava.util.Date to correspond to
the SQL types. They are:

• java.sql.Date for SQL DATE information. The hour, minute, second, and mi
lisecond fields of thejava.util.Date base class are set to zero.

• java.sql.Time for SQL TIME information. The year, month, and day fields o
thejava.util.Date base class are set to 1970, January, and 1. This is the
ro” date in the Java epoch.

• java.sql.Timestamp for SQL TIMESTAMP information. This class extendsja-
va.util.Date by adding a nanosecond field.

All three of the JDBC time-related classes are subclasses ofjava.util.Date,
and as such, they can be used where ajava.util.Date is expected. For example
internationalization methods take ajava.util.Date object as an argument, so
they can be passed instances of any of the JDBC time-related classes.

 A JDBC Timestamp object has its parent’s date and time components
also a separate nanoseconds component. If ajava.sql.Timestamp object is used
where ajava.util.Date object is expected, the nanoseconds component is

MAPPING SQL AND JAVA TYPES 53

-
g a
-
s (by
ult to

this

s to be
rs will
ould

ch col-
ods in

ersion

 back a
red in

ype
However, since a java.util.Date object is stored with a precision of one millisec
ond, it is possible to maintain this degree of precision when convertin
java.sql.Timestamp object to ajava.util.Date object. This is done by convert
ing the nanoseconds in the nanoseconds component to whole millisecond
dividing the number of nanoseconds by 1,000,000) and then adding the res
the thejava.util.Date object. Up to 999,999 nanoseconds may be lost in
conversion, but the resultingjava.util.Date object will be accurate to within one
millisecond.

8.4 Examples of Mapping

In any situation where a Java program retrieves data from a database, there ha
some form of mapping and data conversion. In most cases, JDBC programme
be programming with knowledge of their target database’s schema. They w
know, for example, what tables the database contains and the data type for ea
umn in those tables. They can therefore use the strongly-typed access meth
the interfacesResultSet, PreparedStatement, andCallableStatement. This sec-
tion presents three different scenarios, describing the data mapping and conv
required in each.

8.4.1 Simple SQL Statement

In the most common case, a user executes a simple SQL statement and gets
ResultSet object with the results. The value returned by the database and sto
a ResultSet column will have an SQL data type. A call to aResultSet.getXXX

method will retrieve that value as a Java data type. For example, if aResultSet col-
umn contains an SQLFLOAT value, the methodgetDouble will retrieve that value as
a Javadouble. The table in Section 8.5.6 shows whichgetXXX methods may be
used to retrieve which SQL types. (A user who does not know the type of aResult-

Set column can get that information by calling the methodResultSet.getMetaData

and then invoking theResultSetMetaData methodsgetColumnType or getColumn-
TypeName.) The following code fragment demonstrates getting the column t
names for the columns in a result set:

String query = “select * from Table1”;

ResultSet rs = stmt.executeQuery(query);

ResultSetMetaData rsmd = rs.getMetaData();

int columnCount = rsmd.getColumnCount();

MAPPING JAVA AND SQL TYPES54

s input

a

by the
 Sec-

values
 from
 most,

me-
rs
 with
 the

 a
ed

urn an
 as

va
for (int i = 1; i <= columnCount; i++) {

String s = rsmd.getColumnTypeName(i);

System.out.println (“Column “ + i + “ is type “ + s);

}

8.4.2 SQL Statement with IN Parameters

In another possible scenario, the user sends an SQL statement which take
parameters. In this case, the user calls thePreparedStatement.setXXX methods to
assign a value to each input parameter. For example,PreparedStatement.set-

Long(1, 2345678) will assign the value2345678 to the first parameter as a Jav
long. The driver will convert2345678 to an SQLBIGINT in order to send it to the
database. Which SQL type the driver sends to the database is determined
standard mapping from Java types to SQL types, which is shown in the table in
tion 8.5.2.

8.4.3 SQL Statement with INOUT Parameters

In yet another scenario, a user wants to call a stored procedure, assign
to its INOUT parameters, retrieve values from the results, and retrieve values
the parameters. This case is rather uncommon and more complicated than
but it gives a good illustration of mapping and data conversion.

In this scenario, the first thing to do is to assign values to the INOUT para
ters usingPreparedStatement.setXXX methods. In addition, since the paramete
will also be used for output, the programmer must register each parameter
the SQL type of the value that the database will return to it. This is done with
methodCallableStatement.registerOutParameter, which takes one of the SQL
types defined in the classTypes. A programmer retrieves the results returned to
ResultSet object withResultSet.getXXX methods and retrieves the values stor
in the output parameters withCallableStatement.getXXX methods.

The XXX type used forResultSet.getXXX methods is fairly flexible in some
cases. The table in Section 8.5.6 shows whichResultSet.getXXX methods can be
used to retrieve which SQL types.

TheXXX type used forCallableStatement.getXXX must map to the SQL type
registered for that parameter. For example, if the database is expected to ret
output value whose type isSQL REAL, the parameter should have been registered
java.sql.Types.REAL. Then to retrieve theSQL REAL value, the methodCall-
ableStatement.getFloat should be called (the mapping from SQL types to Ja
types is shown in the table in Section 8.5.1). The methodgetFloat will return the
value stored in the output parameter after converting it from an SQLREAL to a Java

MAPPING SQL AND JAVA TYPES 55

porta-

n SQL

-
va

e

h an
the
float. To accommodate various databases and make an application more
ble, it is recommended that values be retrieved fromResultSet objects before val-
ues are retrieved from output parameters.

The following code demonstrates calling a stored procedure namedgetTest-

Data, which has two parameters that are both INOUT parameters. First theCon-

nection object con creates theCallableStatement object cstmt. Then the
methodsetByte sets the first parameter to25 as a Javabyte. The driver will con-
vert 25 to an SQLTINYINT and send it to the database. The methodsetBigDeci-

mal sets the second parameter with an input value of83.75. The driver will
convert thisjava.math.BigDecimal object to an SQLNUMERIC value. Next the
two parameters are registered as OUT parameters, the first parameter as a
TINYINT and the second parameter as an SQLDECIMAL with two digits after the
decimal point. Aftercstmt is executed, the values are retrieved from theResult-

Set object usingResultSet.getXXX methods. The methodgetString gets the
value in the first column as a JavaString object,getInt gets the value in the sec
ond column as a Javaint, andgetInt gets the value in the third column as a Ja
int.

Then CallableStatement.getXXX methods retrieve the values stored in th
output parameters. The methodgetByte retrieves theSQL TINYINT as a Javabyte,
andgetBigDecimal retrieves theSQL DECIMAL as ajava.math.BigDecimal object
with two digits after the decimal point. Note that when a parameter is bot
input and an output parameter, thesetXXX method uses the same Java type as
getXXX method (as insetByte andgetByte). TheregisterOutParameter method
registers it to the SQL type that is mapped from the Java type (a Javabyte maps to
an SQLTINYINT, as shown in the table in Section 8.5.2).

CallableStatement cstmt = con.prepareCall(

“{call getTestData(?, ?)}”);

cstmt.setByte(1, 25);

cstmt.setBigDecimal(2, 83.75);

// register the first parameter as an SQL TINYINT and the second

//parameter as an SQL DECIMAL with two digits after the decimal point

cstmt.registerOutParameter(1, java.sql.Types.TINYINT);

cstmt.registerOutParameter(2, java.sql.Types.DECIMAL, 2);

ResultSet rs = cstmt.executeUpdate();

// retrieve and print values in result set

while(rs.next()) {

String name = rs.getString(1);

int score = rs.getInt(2);

int percentile = rs.getInt(3);

MAPPING JAVA AND SQL TYPES56

e
ndard

andard

u-

hod
ava

pping
the
System.out.print(“name = “ + name + “, score = “ + score + “, “

System.out.println(“percentile = “ + percentile);

// retrieve values in output parameters

byte x = cstmt.getByte(1);

java.math.BigDecimal n = cstmt.getBigDecimal(2, 2);

To generalize, theXXX in CallableStatement.getXXX and PreparedState-

ment.setXXX methods is a Java type. ForsetXXX methods, the driver converts th
Java type to an SQL type before sending it to the database (using the sta
mappings shown in the table in Section 8.5.2). ForgetXXX methods, the driver
converts the SQL type returned by the database to a Java type (using the st
mappings shown in the table in Section 8.5.1) before returning it to thegetXXX

method.
The methodregisterOutParameter always takes an SQL type as an arg

ment, and the methodsetObject may take an SQL type as an argument.
Note that if an SQL type is supplied in its optional third argument, the met

setObject will cause an explicit conversion of the parameter value from a J
type to the SQL type specified. If no target Sql type is supplied tosetObject, the
parameter value will be converted to the SQL type that is the standard ma
from the Java type (as shown in Section 8.5.2). The driver will perform
explicit or implicit conversion before sending the parameter to the database.

8.5 Tables for Data Type Mapping

This section contains the following tables relating to SQL and Java data types:

Section 8.5.1—SQL Types Mapped to Java Types

Section 8.5.2—Java Types Mapped to SQL Types

Section 8.5.3—SQL Types Mapped to JavaObject Types

Section 8.5.4—JavaObject Types Mapped to SQL Types

Section 8.5.5— Conversions bysetObject

Section 8.5.6—SQL Types Retrieved byResultSet.getXXX methods

MAPPING SQL AND JAVA TYPES 57
8.5.1 SQL Types Mapped to Java Types

SQL type Java type
CHAR String

VARCHAR String

LONGVARCHAR String

NUMERIC java.math.BigDecimal

DECIMAL java.math.BigDecimal

BIT boolean

TINYINT byte

SMALLINT short

INTEGER int

BIGINT long

REAL float

FLOAT double

DOUBLE double

BINARY byte[]

VARBINARY byte[]

LONGVARBINARY byte[]

DATE java.sql.Date

TIME java.sql.Time

TIMESTAMP java.sql.Timestamp

MAPPING JAVA AND SQL TYPES58

 SQL

n

8.5.2 Java Types Mapped to SQL Types

This table shows the reverse mapping of Table 8.5.1, from Java types to
types.

The mapping for String will normally beVARCHAR but will turn
into LONGVARCHAR if the given value exceeds the driver’s limit o
VARCHAR values. The same is true forbyte[] andVARBINARY and
LONGVARBINARY values.

Java Type SQL type
String VARCHAR or LONGVARCHAR

java.math.BigDecimal NUMERIC

boolean BIT

byte TINYINT

short SMALLINT

int INTEGER

long BIGINT

float REAL

double DOUBLE

byte[] VARBINARY or LONGVARBINARY

java.sql.Date DATE

java.sql.Time TIME

java.sql.Timestamp TIMESTAMP

MAPPING SQL AND JAVA TYPES 59

pes
g

8.5.3 SQL Types Mapped to Java Object Types

Since the Java built-in types such asboolean and int are not subtypes of
Object, there is a slightly different mapping from SQL types to Java object ty
for the getObject/setObject methods. This mapping is shown in the followin
table:

SQL Type Java Object Type
CHAR String

VARCHAR String

LONGVARCHAR String

NUMERIC java.math.BigDecimal

DECIMAL java.math.BigDecimal

BIT Boolean

TINYINT Integer

SMALLINT Integer

INTEGER Integer

BIGINT Long

REAL Float

FLOAT Double

DOUBLE Double

BINARY byte[]

VARBINARY byte[]

LONGVARBINARY byte[]

DATE java.sql.Date

TIME java.sql.Time

TIMESTAMP java.sql.Timestamp

MAPPING JAVA AND SQL TYPES60
8.5.4 Java Object Types Mapped to SQL Types

Note that the mapping forString will normaly beVARCHAR but will turn into
LONGVARCHAR if the given value exceeds the driver’s limit onVARCHAR values. The
case is similar forbyte[] andVARBINARY andLONGVARBINARY values.

Java Object Type SQL Type
String VARCHAR or LONGVARCHAR

java.math.BigDecimal NUMERIC

Boolean BIT

Integer INTEGER

Long BIGINT

Float REAL

Double DOUBLE

byte[] VARBINARY or LONGVARBINARY

java.sql.Date DATE

java.sql.Time TIME

java.sql.Timestamp TIMESTAMP

MAPPING SQL AND JAVA TYPES 61
8.5.5 Conversions bysetObject

The methodsetObject converts Java object types to SQL types.

Conversion from Java object types to SQL types.

T
I
N
Y
I
N
T

S
M
A
L
L
I
N
T

I
N
T
E
G
E
R

B
I
G
I
N
T

R
E
A
L

F
L
O
A
T

D
O
U
B
L
E

D
E
C
I
M
A
L

N
U
M
E
R
I
C

B
I
T

C
H
A
R

V
A
R
C
H
A
R

L
O
N
G
V
A
R
C
H
A
R

B
I
N
A
R
Y

V
A
R
B
I
N
A
R
Y

L
O
N
G
V
A
R
B
I
N
A
R
Y

D
A
T
E

T
I
M
E

T
I
M
E
S
T
A
M
P

String x x x x x x x x x x x x x x x x x x x

java.math.Big-
Decimal

x x x x x x x x x x x x x

Boolean x x x x x x x x x x x x x

Integer x x x x x x x x x x x x x

Long x x x x x x x x x x x x x

Float x x x x x x x x x x x x x

Double x x x x x x x x x x x x x

byte[] x x x

java.sql.Date x x x x x

java.sql.Time x x x x

java.sql.Time-
stamp

x x x x x x

MAPPING JAVA AND SQL TYPES62

e

8.5.6 SQL Types Retrieved byResultSet.getXXX Methods

An “x” means that the methodcan retrieve the SQL type. An “X” means that th
method isrecommended for the SQL type.

T
I
N
Y
I
N
T

S
M
A
L
L
I
N
T

I
N
T
E
G
E
R

B
I
G
I
N
T

R
E
A
L

F
L
O
A
T

D
O
U
B
L
E

D
E
C
I
M
A
L

N
U
M
E
R
I
C

B
I
T

C
H
A
R

V
A
R
C
H
A
R

L
O
N
G
V
A
R
C
H
A
R

B
I
N
A
R
Y

V
A
R
B
I
N
A
R
Y

L
O
N
G
V
A
R
B
I
N
A
R
Y

D
A
T
E

T
I
M
E

T
I
M
E
S
T
A
M
P

getByte X x x x x x x x x x x x x

getShort x X x x x x x x x x x x x

getInt x x X x x x x x x x x x x

getLong x x x X x x x x x x x x x

getFloat x x x x X x x x x x x x x

getDouble x x x x x X X x x x x x x

getBigDecimal x x x x x x x X X x x x x

getBoolean x x x x x x x x x X x x x

getString x x x x x x x x x x X X x x x x x x x

getBytes X X x

getDate x x x X x

getTime x x x X x

getTimestamp x x x x X

getAsciiStream x x X x x x

getUnicodeStream x xX x x x

getBinaryStream x x X

getObject x x x x x x x x x x x x x x x x x x x

SAMPLE CODE 63
9
Sample Code

// The following code can be used as a template. Simply

// substitute the appropriate url, login, and password, and then substitute the

// SQL statement you want to send to the database.

//--

//

// Module:SimpleSelect.java

//

// Description:Test program for ODBC API interface. This java application

// will connect to a JDBC driver, issue a select statement

// and display all result columns and rows

//

// Product:JDBC to ODBC Bridge

//

// Author:Karl Moss

//

// Date:February, 1996

//

// Copyright:1990-1996 INTERSOLV, Inc.

// This software contains confidential and proprietary

// information of INTERSOLV, Inc.

//--

import java.net.URL;

import java.sql.*;

class SimpleSelect {

public static void main (String args[]) {

String url = "jdbc:odbc:my-dsn";

String query = "SELECT * FROM emp";

SAMPLE CODE64
try {

// Load the jdbc-odbc bridge driver

Class.forName ("sun.jdbc.odbc.JdbcOdbcDriver");

DriverManager.setLogStream(System.out);

// Attempt to connect to a driver. Each one

// of the registered drivers will be loaded until

// one is found that can process this URL

Connection con = DriverManager.getConnection (

url, "my-user", "my-passwd");

// If we were unable to connect, an exception

// would have been thrown. So, if we get here,

// we are successfully connected to the URL

// Check for, and display and warnings generated

// by the connect.

checkForWarning (con.getWarnings ());

// Get the DatabaseMetaData object and display

// some information about the connection

DatabaseMetaData dma = con.getMetaData ();

System.out.println("\nConnected to " + dma.getURL());

System.out.println("Driver " +

dma.getDriverName());

System.out.println("Version " +

dma.getDriverVersion());

System.out.println("");

// Create a Statement object so we can submit

// SQL statements to the driver

Statement stmt = con.createStatement ();

// Submit a query, creating a ResultSet object

ResultSet rs = stmt.executeQuery (query);

SAMPLE CODE 65
// Display all columns and rows from the result set

dispResultSet (rs);

// Close the result set

rs.close();

// Close the statement

stmt.close();

// Close the connection

con.close();

}

catch (SQLException ex) {

// A SQLException was generated. Catch it and

// display the error information. Note that there

// could be multiple error objects chained

// together

System.out.println ("\n*** SQLException caught ***\n");

while (ex != null) {

System.out.println ("SQLState: " +

ex.getSQLState ());

System.out.println ("Message: " + ex.getMessage ());

System.out.println ("Vendor: " +

ex.getErrorCode ());

ex = ex.getNextException ();

System.out.println ("");

}

}

catch (java.lang.Exception ex) {

// Got some other type of exception. Dump it.

ex.printStackTrace ();

}

}

//---

// checkForWarning

// Checks for and displays warnings. Returns true if a warning

SAMPLE CODE66
// existed

//---

private static boolean checkForWarning (SQLWarning warn)

throws SQLException {

boolean rc = false;

// If a SQLWarning object was given, display the

// warning messages. Note that there could be

// multiple warnings chained together

if (warn != null) {

System.out.println ("\n *** Warning ***\n");

rc = true;

while (warn != null) {

System.out.println ("SQLState: " +

warn.getSQLState ());

System.out.println ("Message: " +

warn.getMessage ());

System.out.println ("Vendor: " +

warn.getErrorCode ());

System.out.println ("");

warn = warn.getNextWarning ();

}

}

return rc;

}

//---

// dispResultSet

// Displays all columns and rows in the given result set

//---

private static void dispResultSet (ResultSet rs)

throws SQLException

{

int i;

// Get the ResultSetMetaData. This will be used for

// the column headings

ResultSetMetaData rsmd = rs.getMetaData ();

// Get the number of columns in the result set

int numCols = rsmd.getColumnCount ();

SAMPLE CODE 67
// Display column headings

for (i=1; i<=numCols; i++) {

if (i > 1) System.out.print(",");

System.out.print(rsmd.getColumnLabel(i));

}

System.out.println("");

// Display data, fetching until end of the result set

boolean more = rs.next ();

while (more) {

// Loop through each column, getting the

// column data and displaying

for (i=1; i<=numCols; i++) {

if (i > 1) System.out.print(",");

System.out.print(rs.getString(i));

}

System.out.println("");

// Fetch the next result set row

more = rs.next ();

}

}

}

SAMPLE CODE68

JDBC-ODBC RELEASE NOTES 69

s

river.
lim-
ative
iver

 by
lica-
BC

elop-

cur-
s;

C.
10
JDBC-ODBC Release Note

10.1 JDBC-ODBC Bridge

 If possible, use a Pure Java JDBC driver instead of the Bridge and an ODBC d
This completely eliminates the client configuration required by ODBC. It also e
inates the potential that the Java VM could be corrupted by an error in the n
code brought in by the Bridge (that is, the Bridge native library, the ODBC dr
manager library, the ODBC driver library, and the database client library).

10.1.1 What Is the JDBC-ODBC Bridge?

The JDBC-ODBC Bridge is a JDBC driver which implements JDBC operations
translating them into ODBC operations. To ODBC it appears as a normal app
tion program. The Bridge implements JDBC for any database for which an OD
driver is available. The Bridge is implemented as thesun.jdbc.odbc Java package
and contains a native library used to access ODBC. The Bridge is a joint dev
ment of Intersolv and JavaSoft.

10.1.2 What Version of ODBC Is Supported?

The bridge supports ODBC 2.x. This is the version that most ODBC drivers
rently support. It will also likely work with most forthcoming ODBC 3.x driver
however, this has not been tested.

10.1.3 The Bridge Implementation

The Bridge is implemented in Java and uses Java native methods to call ODB

JDBC-ODBC RELEASE NOTES70

No
client
ag-

d, the
e

e:

 an

idge

 by a
les)

of the
lient
10.1.4 Installation

The Bridge is installed automatically with the JDK as packagesun.jdbc.odbc. See
your ODBC driver vendor for information on installing and configuring ODBC.
special configuration is required for the Bridge. See your database vendor for
installation and configuration information. On Solaris, some ODBC driver man
ers name their libslibodbcinst.so and libodbc.so. The Bridge expects these
libraries to be namedlibodbcinst.so.1 andlibodbc.so.1, so symbolic links for
these names must be created.

10.2 Using the Bridge

The Bridge is used by opening a JDBC connection using a URL with theodbc sub-
protocol. See below for URL examples. Before a connection can be establishe
bridge driver class,sun.jdbc.odbc.JdbcOdbcDriver, must either be added to th
java.lang.System property namedjdbc.drivers, or it must be explicitly loaded
using the Java class loader. Explicit loading is done with the following line of cod

Class.forName(sun.jdbc.odbc.JdbcOdbcDriver);

When loaded, the ODBC driver (like all good JDBC drivers) creates
instance of itself and registers this with the JDBC driver manager.

10.2.1 Using the Bridge from an Applet

JDBC used with a Pure Java JDBC driver works well with applets. The Br
driver does not work well with applets.

10.2.2 Most Browsers Do Not Support the Bridge

Since the Bridge is an optional component of the JDK, it may not be provided
browser. Even if it is provided, only trusted applets (those allowed to write to fi
will be able to use the Bridge. This is required in order to preserve the security
applet sandbox. Finally, even if the applet is trusted, ODBC and the DBMS c
library must be configured on each client.

JDBC-ODBC RELEASE NOTES 71

sion 10
.x.

riv-
s. To
7197,

ing
 (Win-
ase
t 1-

other

cause
 on
ome

e

10.2.3 Tested Configurations

From Solaris, we have used the Bridge to access Oracle 7.1.6 and Sybase Ver
running on Solaris. From NT, we have used the Bridge to access SQL Server 6

10.2.4 ODBC Drivers Known to Work with the Bridge

Visigenic provides ODBC drivers which have been tested with the the Bridge. D
ers are available for Oracle, Sybase, Informix, Microsoft SQL Server, and Ingre
purchase the ODBC DriverSet 2.0, please contact Visigenic sales at 415-312-
or visit the web sitewww.visigenic.com. The INTERSOLV ODBC driver suite
should be completely compatible with the JDBC-ODBC Bridge. The follow
drivers have successfully passed a minimal test suite: Oracle, xBASE, Sybase
dows NT/95 only), Microsoft SQL-Server, and Informix. To evaluate or purch
INTERSOLV ODBC drivers, please contact INTERSOLV DataDirect Sales a
800-547-4000 Option 2 or via the World Wide Web athttp:\\www.intersolv.com.
The MS SQL Server driver has also been used successfully on NT. Many
ODBC drivers will likely work.

10.2.5 ODBC Driver Incompatibilities

On Solaris, we have found that the Sybase ctlib-based drivers don’t work be
ctlib has a signal-handling conflict with the Java VM. This is likely not a problem
NT due to differences in the NT Java VM; however, this has not been verified. S
ODBC drivers only allow a single result set to be active per connection.

10.2.6 What Is the JDBC URL Supported by the Bridge?

The Bridge driver uses theodbc subprotocol. URLs for this subprotocol are of th
form:

jdbc:odbc:<data-source-name>[<attribute-name>=<attribute-value>]*

For example:

jdbc:odbc:sybase

jdbc:odbc:mydb;UID=me;PWD=secret

jdbc:odbc:ora123;Cachesize=300

JDBC-ODBC RELEASE NOTES72

ridge
s lim-
vers
10.2.7 Debugging

The Bridge provides extensive tracing whenDriverManager tracing is enabled. The
following line of code enables tracing and sends it to standard out:

 java.sql.DriverManager.setLogStream(java.lang.System.out);

10.3 General Notes

The Bridge assumes that ODBC drivers are not reentrant. This means the B
must synchronize access to these drivers. The result is that the Bridge provide
ited concurrency. This is a limitation of the Bridge. Most Pure Java JDBC dri
provide the expected level of concurrent access.

	1.1 What Is JDBC™?
	1.1.1 What Does JDBC Do?
	1.1.2 JDBC Is a Low-level API and a Base for Highe...
	1.1.3 JDBC versus ODBC and other APIs
	1.1.4 Two-tier and Three-tier Models
	1.1.5 SQL Conformance

	1.2 JDBC Products
	1.2.1 JavaSoft Framework
	1.2.2 JDBC Driver Types
	1.2.3 Obtaining JDBC Drivers
	1.2.4 Other Products

	2.1 Overview
	2.1.1 Opening a Connection
	2.1.2 URLs in General Use
	2.1.3 JDBC URLs
	2.1.4 The “odbc” Subprotocol
	2.1.5 Registering Subprotocols
	2.1.6 Sending SQL Statements
	2.1.7 Transactions
	2.1.8 Transaction Isolation Levels

	3.1 Overview
	3.1.1 Keeping Track of Available Drivers
	3.1.2 Establishing a Connection

	4.1 Overview
	4.1.1 Creating Statement Objects
	4.1.2 Executing Statement Objects
	4.1.3 Using the Method Execute
	4.1.4 Statement Completion
	4.1.5 SQL Escape Syntax in Statement Objects

	5.1 Overview
	5.1.1 Rows and Cursors
	5.1.2 Columns
	5.1.3 Data Types and Conversions
	5.1.4 Using Streams for Very Large Row Values
	5.1.5 NULL Result Values
	5.1.6 Optional or Multiple Result Sets

	6.1 Overview
	6.1.1 Creating PreparedStatement Objects
	6.1.2 Passing IN Parameters
	6.1.3 Data Type Conformance on IN Parameters
	6.1.4 Using setObject
	6.1.5 Sending SQL NULL as an IN parameter
	6.1.6 Sending Very Large IN Parameters

	7.1 Overview
	7.1.1 Creating a CallableStatement Object
	7.1.2 IN and OUT Parameters
	7.1.3 INOUT Parameters
	7.1.4 Retrieve OUT Parameters after Results
	7.1.5 Retrieving NULL Values as OUT Parameters

	8.1 Overview
	8.2 Mapping SQL Data Types into Java
	8.3 SQL Types
	8.3.1 CHAR, VARCHAR, and LONGVARCHAR
	8.3.2 DECIMAL and NUMERIC
	8.3.3 BINARY, VARBINARY, and LONGVARBINARY
	8.3.4 BIT
	8.3.5 TINYINT, SMALLINT, INTEGER, and BIGINT
	8.3.6 REAL, FLOAT, and DOUBLE
	8.3.7 DATE, TIME, and TIMESTAMP

	8.4 Examples of Mapping
	8.4.1 Simple SQL Statement
	8.4.2 SQL Statement with IN Parameters
	8.4.3 SQL Statement with INOUT Parameters

	8.5 Tables for Data Type Mapping
	8.5.1 SQL Types Mapped to Java Types
	8.5.2 Java Types Mapped to SQL Types
	8.5.3 SQL Types Mapped to Java Object Types
	8.5.4 Java Object Types Mapped to SQL Types
	8.5.5 Conversions by setObject
	8.5.6 SQL Types Retrieved by ResultSet.getXXX Meth...

	10.1 JDBC-ODBC Bridge
	10.1.1 What Is the JDBC-ODBC Bridge?
	10.1.2 What Version of ODBC Is Supported?
	10.1.3 The Bridge Implementation
	10.1.4 Installation

	10.2 Using the Bridge
	10.2.1 Using the Bridge from an Applet
	10.2.2 Most Browsers Do Not Support the Bridge
	10.2.3 Tested Configurations
	10.2.4 ODBC Drivers Known to Work with the Bridge
	10.2.5 ODBC Driver Incompatibilities
	10.2.6 What Is the JDBC URL Supported by the Bridg...
	10.2.7 Debugging

	10.3 General Notes

