
The World of Objects 

Distributed 
Objects 

BY ROGER SESSIONS 

L et's try a quick psychological 
test. J'U put forth a word, and I 
wan! you to say the first word 

that comes to mind. Are you ready? 
Here's the word: SOM. Most likely, this 
word elicited one of three reactions: 
perplexity, a better object model, or a 
betrerC++. 

SOM technology was first intro­
duced with OS/2 2.0. The first-ever arti· 
cle about SOM appeared in the I 992 
winter issue of OS/2 Dewdoper (p.l07), 
wrinen by Nurcan Coskun and myself. 
Over the following three years, SOM 
was imbued with a variety of new fea­
tures, including one that should have 
guaranteed it a place in the annals of 
software history. 

This critical feature added to SOM 
2.0 was the ability to distribute objectS. 
so~ was the first serious commercial 
implementation of the Object Manage­
ment Group's CORBA model, which 
defined an Industry standard architec­
ture for distributing objectS. 

The fact that so few people think of 
object distribution when they hear the 
word SOM, is a sad testimony to IBM's 
marketing ability or Jack thereof. IBM 
has consistently failed to realize the 
importance of object distribution and 
has given a muddled story of what 
SOM is all about. 

This reality is so~·s gloomy past. 
Fortunately, there is some bright news 
on the horizon. TI1e upcoming release 
of SOM has been redesigned, with 
object distribution as the focal point of 
the release. If IBM can fogure out how 
to market this capability, "~th half the 
aplomb that Sun has shown toward 
marketing java (a big •if"), we might 
have a real winner. 

In this colunm, let's introduce writ· 
ing distributed objects with SOM. AU of 

44 OS/2 MAGAZINE Hill !116 

the code examples work with the cur­
rent 2.1 release. To simplify tile exam­
ples and concepts, we'U use the Clan­
guage bindings for SOM. 

Distributed 
obJect applications 
Distributed object technology is impor­
tant. because ifs the most natural mech­
anism .. -e have for doing distributed pro­
gramming. If "-eareobject-oriented pro­
grammers, then we already know about 
combining behavior and data into tittle 
packages that we call objects. With 
object distribution, we now bave the 
abiUty to take these little packages and 
move them to other processes. 

From the program's point of view, 
no difference e.'Cists bet\\-een using local 
or remote objectS. In either case, we'll 
have an object. That object contains 
state or data. We Interact with the 
object through well-defined method 
invocations. Because the state of an 
object isonlyorintemalconcem to the 
object, we don't care where that stat~ 
actually resides. Our code works fine, as 
long as the invoked metilods can find 
the right target object, regardless or 

flprt 2:' DUtrilotttd SOM orditKiwt ts 
-brclttt. 

wbrtba that object Jn.-es in our address 
space or in anotiler. 

It' s similar to the concept of 
remote procedure calls (RPC), which 
is probably the most widely recog­
nized paradigm for distribut~ pro­
gramming. However, procedwe calls 
can only be distributed when proce­
dures have been carefully designed 
with distribution in mind. ObjectS are 
naturally encapsulated, so any well-








