
The World of Objects 
Metaclass and the 
Dogs of Shakespeare 

BY ROGER SESSIONS 

I 
n my February column on poly­
morphism I explained why little­
Dogs go "woof woof" and bigDogs 

go "Woof Woof Woof Woof" (OS/2 
Magazine, p. 46). Implicit in this discus­
sion was that all dogs bark when asked, 
and the only difference between the 
types of dogs is the nature of that bark. 
I showed how the code: 

_bark(Lassie, ev) 

generates the bigDog bark ("Woof Woof 
Woof Woof"), while the code: 

_bark(Toto, ev) 

generates the littleDog bark ("woof 
woof"). 

However, I was recently reading 
Shakespeare, and it occurred to me that 
I made an error in that column. I be­
lieve in admitting my mistakes, so here 
is an attempt to set the record straight. 

The line that made me rethink my 
analysis oflittleDogs was this line, spo­
ken by King Lear: "The little dogs and 
all, Tray, Blanch, and Sweet-heart, see, 

" they bark at me." In order to see why 
this line caused me such vexation, we 
must translate it from Shakespearean 
English into a more familiar language, 
namely SOM with the C bindings. The 
SOM C translation of it is: 

King KingLear; 
LittleDog Tray, Blanch, 

Sweetheart; 
I* .•• *I 
_enter(KingLear, ev); 
_LookAt(Tray, ev); 
_LookAt(Blanch, ev); 
_LookAt(Sweetheart, ev); 

resulting in the following output: 

"The little dogs and 

all, Tray, Blanch, 

and Sweet-heart, 

see, they 

bark at me." 

woof woof 
woof woof 
woof woof 

The problem is that at no point does 
King Lear ask any of the littleDogs to 
bark! This iact is quite at odds with the 
code I showed in February, which 
would have permitted the littleDogs to 
bark only if their monarch so requested. 
With my polymorphic littleDogs, 
Shakespeare would have had to include 
these lines in his play to get his desired 
effect: 

_bark (Tray, ev); 
_bark(Blanch, ev); 
_bark(Sweetheart, ev); 

So, in this column I am going to 
reimplement littleDogs as they would 
have been programmed by the Bard 
himself. 

Let's analyze the situation further. 
Just what did King Lear do to make the 

dogs bark? Perhaps he looked at the 
dogs? I believe Shakespeare's intention 
was that looking at the dogs was merely 
one example of what King Lear might 
have done to set off the barking fit. I 
submit that anything King Lear did to 
the dogs would have had the same 
result. They would have barked even if 
King Lear had asked them to roll over!" 

In other words, these dogs always 
bark, in addition to doing whatever it is 
they do. Barking, then, is not associated 
with the implementation of a method, 
but rather is associated with the invoca­
tion of a method. How do we program 
thisinSOM? 

The answer is to slip into a new mode 
of programming, one that Ira Forman 
describes as metaclass programming. Ira is 
one of the SOM developers and great 
champions of metaclass programming, 
which he describes as the next major 
advance in programming languages. As 
you can see, Ira, similar to all great 
champions, sometimes gets carried 
away, but he does raise some interesting 
issues. I, along with many others, am 
indebted to him for first explaining the 
concepts of metaclass programming. 

Those of YO)I who have heard Ira's 
talks will reco_inize my reimplemented 
barking dogs as an adaptation of Ira'.s 
growling dogs example (which, of 
course, is an adaptation of my original 
barking dog, so all's fair). 

We can briefly describe metaclass 
programming as programming not at 
the object level, but at the class level. It 
turns out that we are still programming 
objects, but these are now very special 
objects-class objects. Lets look more 
closely at these class objects. 

All SOM objects are associated with 
some class. Knowing that Toto, for 
example, is instantiated as a littleDog 

05/2 M A G A Z I N E M A Y 1 9 9 6 51 



tells us that the Toto object is associated 

with the littleDog class. 

Every class that is available to a 

given SOM program has an associated 

object called the class object. IflittleDog 

is derived from dog, and dog from 

SOMObject (the root of all SOM 

objects), then a program with instanti­

ated little Dogs will have class objects in 

its address space for SOMObject, dog, 

and littleDog. 
These class objects are similar to 

other SOM objects. They must be 

instantiated, they are associated with a 

class, they are defined by IDL, and they 

have associated methods. Many SOM 

52 OS/2 M A G A Z I N E M A Y 1 9 9 6 

The World of Objects 

programmers aren't aware of these class 

objects, because they are often auto­

matically instantiated. When one exe­

cutes the statement: 

Toto= LittleDogNew(); 

under the covers, SOM checks to make 

sure that class objects have been instan­

tiated for littleDog and all of littleDog's 

base classes. If any class objects haven't 

already been instantiated, they will be 

instantiated as part of the execution of 

littleDogNew. 
Several ways exist for getting hold of 

the class object of a given class. One of 

the most common is to 

use the SOM-provided 

macro _<class>. In the 

SOM-generated header file 

for any class, say, little­

Dog, is a macro of the 

form _<class>. For the lit­

tleDog class, this macro 

would look like _little­

Dog. This macro returns 

the class object. (In the lit-

tleDog case, the class .object 

returned is the one associated 

with the littleDog class.) 

As with all SOM objects, these 

class objects are derived ulti­

mately from SOMObject. There­

fore, it's safe to call any of the 

SOMObject methods on class 

objects. One of the SOMObject 

methods is _getClassName, a 

method that returns the class of 

an object. For example, if we 

invoke _getClassName on Toto, 

we'll have the string "littleDog" 

returned. If we invoke this method on 

_littleDog, we will, by default, get the 

string "SQMClass." 
The ,default class of all class objects 

is "SOMClass." In fact, the only distin­

guishing characteristic of class objects 

is that their class is always either SOM­

Class or some class derived from SOM­

Class. As do all classes, SOMClass has a 

defining IDL with various method dec­

larations. The SOMClass IDL can be 

found in the SOM-include directory. 

Class objects have a lot of interesting 

behaviors. One of these behaviors is the 

logic controlling how methods are 

invoked on objects of their class. It can 

be modified by changing the imple­

mentation of the class object's class. 



You can see that the class of a class 
object is very important. Among other 
things, the class of a class object con­
trols both method invocation and 
instantiation. Their invocation imple­
mentation is what we need to investi­
gate to implement a Shakespearean ver­
sion of littleDog. 

When we start talking about class 
objects, language quickly gets in our 
way. For example, we might say that the 
invocation of Toto's methods is con­
trolled by the class ofToto's class object, 
but who understands that? So instead, 
we shorten it by saying that the class of 

54 05/2 M A G A Z I N E M A Y 1 9 9 6 

The WoPid of Objects 

Toto's class object is defined to 
be Toto's metaclass. This expla­
nation gives us a much easier 
statement to contemplate: The 
invocation of Toto's methods is 
controlled by Toto's metaclass. 

To create our desired little­
Dog behavior, we need to modi­
fy the behavior defined by 
Toto's metaclass so as to tack in 
a little something else when 
invoking a method. 

Unfortunately, overriding 
the method invocation behav­
ior defined by SOMClass is 

beyond most people's programming 
ability. But fortunately, SOM has a class 
derived from SOMClass that provides 
exactly the hooks we need. This class is 
called SOMMBeforeAfter. 

SOMMBeforeAfter is a SOM-pro­
vided class that defines two methods: 
sommBeforeMethod and sommAfter­
Method. It also redefines the method 
invocation behavior to use the follow­
ing pseudo-coded algorithm: 

invokeCmethodName, 
targetObject) 

{ 

} 

sommBeforeMethod 
CtargetObject); 

_methodName(targetObject); 
sommAfterMethod 

CtargetObject); 

In other words, objects whose meta­
class is SOMMBeforeAfter automati­
cally have the _sommBeforeMethod 
method invoked before every method 

invocation and the _sommAfter­
Method method invoked after every 
method invocation. All we need to 
do now is stick our bark behavior into 
the sommBeforeMethod method. 
Then, our littleDogs will bark before 
any method invocation. 

We accomplish this task by defin­
ing a new class, say, barkingClass, 
which is derived from SOMM­
BeforeAfter and overrides sommBe­
foreMethod. Our override imple­
mentation will include barking 
behavior. 

Now we only have one conceptu­
al problem left. We said that the 
default metaclass for all objects is 
SOMClass. How do we tell Toto that 
his metaclass is our newly defined 
barkingClass? By using a special 

directive in the dog IDL. This directive 
is the metaclass directive. 

Let's summarize our discussion and 
then look at some sample code. 

Every SOM object has an associated 
class. Every class has an associated class 
object. We can change the behavior of a 
whole class of objects by modifying the 
behavior of the class object. We do this 
modification by following these steps: 

Ill Deriving a new class from either 
SOMClass or some class derived 
from SOMClass. 

Ill Use the metaclass directive to tell the 
original class (for example, littleDog) 
that the new class is its metaclass. 

As a specific example of this, we cre­
ated a barking littleDog. We followed 
these specific steps: 

Ill We derived a new class, barking­
Class, from SOMMBeforeAfter, a 
SOM-provided class derived from 
SOMClass. 

Ill We overrode the SOMMBeforeAfter 
method, sommBeforeMethod to 
add barking behavior. 

Ill We used the metaclass directive to 
telllittleDog its metaclass is now 
barkingClass. 

Ill This action changed the class of the 
littleDog class object to a barking­
Class rather than a SOMClass, which 
it would have been by default. In 
other words, the metaclass of little­
Dogs is changed to barkingClass, 
rather than SOMClass. 

Ill This change resulted in the barking 
behavior automatically being in-



The World of Objects 
voked before any method is called 

on a littleDog object. 

Summary 
Shakespeare would be very happy with 

this implementation of littleDog. No 

matter what King Lear tells these lit­

tleDogs to do, they are going to bark 

first. 
We can "meta-program" regardless 

of which SOM language bindings we 

use or how we create our SOM objects. 

It works just as well with distributed 

objects as with local ones. 
We have many possible uses of 

metaclass programming. We could use 

it to create a garbage collection scheme 

that keeps track of which objects are in 

use. We could use it to tie into a persis­

tence framework that checks if object 

data needs to be read in from a disk 

before methods are invoked on the 

object. We could also use it as a basis 

for caching objects across address 

spaces. 
Try it, you'll like it. Shakespeare 

would have. m:Jil 

References 
For more information on metaclass pro­

gramming, refer to these articles: 

Ira R. Forman, Scott H. Danforth, and Hari H. 

Madduri, 1994. Composition of Before/ After 

Metaclasses in SOM. OOPSLA '94 Conference 

Proceedings, October 23-27 Portland, Oregon. 

Scott H. Danforth and Ira R. Forman, 1994. 

Reflections on Metaclass Programming in 

SOM. OOPSLA '94 Conference Proceedings, 

October 23-27, Portland, Oregon. 

Roger Sessions is president of Object­
Watch Inc., a company specializing in 
training and consulting in the use of 
COREA technologies on IBM platforms. 
He has spoken at over 30 conferences and 
has written extensively. His books include 
Object Persistence: Beyond Object­

Oriented Databases, Class Construc­

tion inC and C++; Object-Oriented 

Fundamentals, and Reusable Data 

Structures for C. Roger also publishes an 
Internet newsletter called Object Watch 

on SOM and can be contacted via e-mail 
at roger@(c. net. 

Lock and Load! 
Create, Deliver and Secure OS/2 Desktops over any LAN! 

Desktop 

Commander 
A Complete Solution To OS/2 Desktop Control 

• Easily take a picture of use~s desktops and 
store it centrally! 

• Standardize any group of workstations or allow 
users to have their own Desktop wherever they 
log in! 

• Restrict right mouse button options! 
• Restore lost or changed desktops instantly! 
• Security upgrade available! 

A~{\~~.~ 

• Store/Manage Desktops Centrally! Users get their 
desktop whenever and wherever log on! 

• Works with any LAN! 
• Easily associate Desktops with User ID's! 
• Avoid difficult REXX maintenance or INI nightmares! 

• Authenticate users Desktops with your LAN Security! 

Desktop 

Observatory 
A Complete Solution To OS/2 Desktop Security 

• Same benefits of the Desktop Commander and more! 

• Password protect objects and applications ... even the 

Launch Pad! 
• Take background tasks off the Window List! 
• Create Security/ Audit Logs! 
• Drag and Drop File Encryption! 
• Prevent Cnti-Break and Alt-F1 access! 
• Inhibit unauthorized file access! 
• Prevent clever users from building unauthorized objects! 

Information 800.525.1650 . 
© 1995 Pinnacle Technology, Inc. • PO Box 128, Kirklin, IN 46050 .• 317.279.5157 

OS/2, OS/2 Ready!, OS/2 WARP and Ready for OS/2 WARP are trademarks of the IBM Corporation. © 1995 Pinnacle Technology, Inc. All Rights Reserved. 

Reoder Service No. 28 

-60,000 Power Users 
and Corporate Buyers 

,.,., 

MARKET 
PLAUE 

• OS/2, Windows, DOS Software 

• High-end Computer Systems 
• Powerful Per)pherals 
• Memory, B9'ard and Upgrade Products 

• Storage & Backup Solutions 
• Networking Products & Services 
• Enterprise Computing 
• Multimedia 
• Services & Consulting 

Advertise in the OS/2 Magazine 

OS/2 MARKETPLACE 
Call today to place an ad! 

Gordon Peery at (603) 924-9141 

gpeery@ mfi.com 

05/2 M A G A Z I N E M A Y 1 9 9 6 55 

• 


