
The World of Objects
Your Dog on .Java.
Any Questions?

BY ROGER SESSIONS

I
t's hard not to like dogs. You come
home after a hard day. You turn
on your computer. You type

"dog". You always get the cutest little
"woof woof".

The only problem I ever have with
my dog is when I'm forced to use some­
body else's computer. Then when I
type "dog", instead of seeing my
expected greeting I get:

SYS1041: The name specified is
not recognized as an internal
or external command, oper­
able program or batch file.

I have thought of placing my dog.exe
on my personal Web page. I would
know then, that, wherever I am, on
whatever computer I am using, and
whenever I am feeling stressed out I
can start up a Web server, download
dog.exe, and get my reassuring little
"woof woof".

This setup would work in those
lucky situations that contain the fol­
lowing conditions:

• I am using an IBM compatible
machine.

• I am using an OS/2 system instead
of a you-know-what system.

• All of the DLLs my dog depends on
have been installed.

Wouldn't it be nice if I could down­
load my dog to any machine, while
running any operating system, and
know that I could count on my dog
doing its little doggy thing?

For that matter, as a dog developer,
who has invested thousands of person
hours in developing my dog applica­
tion, wouldn't it be nice to know I
could sell it to dog lovers everywhere?

46 OS/2 M A G A Z I N E J U N E 1 9 9 6

And that I wouldn't have to have one
version for OS/2, another version for
MVS, another version for Macintosh,
and soon?

Smell the coffee
The ability to create a single executable
and run it on any machine is the most
important feature of a hot new pro­
gramming language called Java. Like
any self-respecting program developed
in the last 10 years, Java is object-ori­
ented, which makes it fair game for this
column.'Unlike other recently devel­
oped programming languages, Java has
received unprecedented interest with­
in the programming community, even
before it was released as an official
product. If you start getting interested
in Java, there are a few web sites you
might want to check out. These sites
are described in Table 1.

Most of Java's publicity has focused
on its ability to run programs within
Internet W ~b browsers; it is within this
context that most Java code is current­
ly bt'!ing written. However, over the
long haul, it's the system independence
of the program executable that may
well prove its most historic feature.

On December 6th of last year, IBM
announced that it had licensed Java,
and that it" ... intends to port Java tech­
nology to its OS/2 and AIX operating

systems, as well as Microsoft Windows
3.1, and it will make those ports avail­
able over the World Wide Web ... "

IBM has already fulfilled at least part
of this availability promise. At press
time for this column, you can set your
Web pointer to http://ncc.hursley.ibm.
com/javainfo/, register as a Java devel­
oper, and download the entire beta
Java system.

If you do, make sure you install Java
in an HPFS partition. Java files use very
long path names, and have no option
for standard DOS-style 8.3 names.

Let's take a look at some actual]ava
code and get a feeling for the language.

We will start with an animal inter­
face that defines the eat and setFood
methods. From it, we derive a dog inter­
face that adds on the l:>ark method. The
animal interface is defined in the file
animal.java. The dog interface is
defined in dog.java (Listing 1).

An interface describes what meth­
ods an object supports, but not how
those behaviors are implemented.
In Listing 1, the first line of both ani­
mal.java and dog.java uses the keyword
interface to indicate that we are defin­
ing interfaces, not implementations.
These irtterface files are used by clients
to understand what behaviors are sup­
ported by their objects.

An interface can be derived from

Listing 1: Interface files.

another interface, as is our dog from
our animal in Listing 1. This fact is indi­
cated by use of the keyword extends.
We say dog extends animal, meaning
that dog will support all the animal
behaviors in addition to its own.

In Java, a class is one of many possi­
ble implementations of an interface.
Listing 2 gives the animal_implemen­
tation class, an implementation of the
animal interface, and dog_implemen­
tation, littleDog_implementation,
and bigDog_implementation class­
es-three implementations of the dog
interface. We use the keyword class to
indicate we are showing an implemen­
tation, not an interface.

Implementing an interface means to
provide implementations of each of the
methods defined in a particular inter­
face. Our dog_implementation imple­
ments our dog interface, which,
remember, includes the animal inter­
face. We use the keyword, implements,
to indicate that a particular class is
implementing a particular interface.

Extending a class means deriving a
new class from an existing class. The
derived class can either add new meth­
ods or override existing ones. As shown
in Listing 2, our dog_ implementation
extends the animal_implementation
by adding a bark implementation to
the setFood and eat implementations
provided by animal_implementation.
Our littleDog_implementation and
bigDog_implementation extends the
dog_implementation by overriding
the bark method.

The use of interfaces is optional in
Java. Most writers either don't describe
it at all or describe it as a poor man's
version of multiple inheritance. I think

The World of Objects
this is unfortunate. The con­
cept of interface descrip­
tions, independent of im­
plementation, is a useful
concept. Describing all pub­
lic classes with well-docu­
mented interfaces and dis­
tributing these as source
files, while distributing
implementations only as
binary files, would be very
natural.

Our client code is shown
in Listing 3. In C++, client
code is not typically a class.

In Java, everything is a class (except for
interfaces, which aren't really things at
all, but only definitions of things). You
run a class.

As you can see in Listing 3, the class
test defines one public static method

called main. It's defined as public so
that it can be invoked publicly. It's
defined as static, because it can be
invoked without an actual object of the
class being instantiated. The name of
the method is main, which is the
method that is run by default when
running a class.

The method test::main declares
four objects. Pooh is an animal, while
Snoopy, Lassie, and Toto are all dogs.
Keep in mind that animals are just
interfaces. We won't discover what
actual implementations will be used
until object instantiation time

The instantiations use the new
directive, as shown in the client code.
Through use of this directive, Pooh
becomes an animal_implementation,
a class which supports the animal inter­
face. Snoopy, Lassie, and Toto become

Listing 2: Implementation program.

OS/2 M A G A Z I N E J U N E l 9 9 6 47

: i

dog_implementation, big­
Dog_implementation, and lit­
tleDog_implementations,
respectively-all classes that
support the dog interface.

java has simplified the cod­
ing process with two decisions.
The first is lack of support for
pointers. The second is auto­
matic memory management.

You can see the impact of
both of these decisions in the
implementation of the setFood
method shown in Listing 2.
This implementation requires
only a single line of code:

food = myfood;

In C++, this code looks like:

if (!food) free(food);
food= <string)

malloc(strlen
(myfood)+1);

strcpy(food, myfood);

Two out of the three lines of
the C++ version are dealing ·
with memory management.
Not only is most of the code
doing memory management,
but it's by far the most compli­
cated code. The ability of java to
automatically manage memory
is a considerable simplification.

Not only is the java code
simpler, it's less fragile. The java
version will work fine even if
the food variable had never
been initialized. The C++ code
will fail on any system where
food had not been initialized to NULL.

java is heavily influenced by C++.
The main syatax of declaring vari­
ables, using operations, and invoking
methods is the same in both lan­
guages. The major differences, many
of which we have already discussed,
include the following:

• addition of the concept of interface
• addition of automatic memory

management
• lack of support for pointers
• lack of support for multiple inheri­

tance in class definitions, though it
is supported in interface definitions

• lack of support for structures, which
were considered redundant with
classes.

48 05/2 M A G A Z I N E J U N E 1 9 9 6

~milar to C++,Java has full support
for polymorphism. (If you are unfamil­
iar with polymorphism, see "littleDogs,
Polymorphism, and Frameworks," Feb­
ruary 1996, p. 46.) You can see the
polymorphic resolution of the bark
method in the client code output
shown in Listing 3, where the three dif­
ferent dogs bark differently based on
their implementation of bark.

java is heavily influenced by the
Internet. The mindset of]ava is to de­
velop programs that, in their executable
form, can be downloaded and run on
any machine. In other words, java seeks
to create a universal executable.

java accomplishes this universal
executable by running all Java exe­
cutables through an interpreter. The

executables are, in fact, com­
piled versions of the source
code, but they are compiled for
the interpreter.

This concept is different
than our traditional notion of
interpreters. Most interpreters
run source code directly. This
method achieves universality
but at a considerable perfor­
mance penalty. The java inter­
preter runs binary code that
has been heavily optimized by
the java compiler.

Unlike most binary code,
the binary code produced by
the java compiler is universal­
ly standardized. It's exactly the
same whether compiled on
OS/2 or on Windows 95, be­
cause it's produced according
to the standards set by the Java
Interpreter, not the standards
set by an operating system. It's
the java Interpreter that is
responsible for getting the
binary to run on a particular
operating system.

Thus, we get both universal­
ity and performance. We get
universality because the java
interpreter is responsible for
running a program, and any
machine with a java inter­
preter can run any Java pro­
gram. We get performance,
because the interpreter is run­
ning pre-compiled code rather
than source code.

We run the java compiler
by typing "javac" and the
name of the source file, which

must include the extension .java. For
example, to compile our test class, we
type "javac test. java."

The compiler will automatically
compile' any other files on which this
file is dependent. So for our test pro­
gram, we will automatically compile
animal.java, dog.java, animal_imple­
mentation.java, and so on.

The compiler generates files with
the extension .class. In our case, the
compile of test.java will result in
test.class, dog. class, and so forth.

We can run any of these classes by
invoking the java interpreter and also
the name of the class without any
extensions. The only class that is
meaningful to run is our test class,
because it is the only class with a

main. We run the test class by typing
"java test."

Java is· designed to be virus un­
friendly.Java programs are intended to
be downloaded over the Internet. We
are all aware of the danger of down­
loading viruses. The Java developers
wanted to make Java an unlikely carri­
er for viruses, so two mechanisms are
used to protect Java programs.

The first protection mechanism is
lack of support for pointers. We have
already discussed this in the context
of program simplification. Without
pointers, writing a program that will
wander outside of its address space,
and, for example, starts usurping func­
tions of the operating system is very
difficult.

The second protection mechanism
is through the Java interpreter. Because

. all Java programs run under control of
the interpreter, Java has an opportuni­
ty to pre-screen programs before they
are allowed to run. Considerable intel­
ligence is being built into the inter­
preter to ensure that programs don't
do things outside the bounds of stan-

The World of Objects
dard operations, such as update system
files.

In summary, lets recap the major
Java features that make it attractive to
online developers.

II Java is a full object-oriented pro­
gramming language, supporting the
three must-haves of any object-ori­
ented language: encapsulation,
inheritance, and polymorphism.

II Java supports separation of interface
and implementation, allowing dis­
tribution of interface source with­
out distribution of implementation
source.

II Java is much easier to program than
C++ due to its automatic memory
management and lack of support
for pointers.

II Java executables are machine-inde­
pendent and virus-resistant, allow­
ing them to be easily and safely dis­
tributed over networks.

So this is your dog on}ava: simple,
safe, and a dog that will follow you
anywhere.

Acknowledgements
The sample code in this article is derived
from some code I developed with Simon
Nash at IBM. I appreciate his willingness
to share his expertise and to "zetme use this
code. !llifil

Roger Sessions is presidentofObjectWatch
Inc., a company specializing in training
and consulting in the use of COREA tech­
nologies on IBM platforms. He has spoken
at over 30 conferences and has written
extensively. His books include Object Per­
sistence: Beyond Object-Oriented
Databases, Class Construction in C and
C++; Object-Oriented Fundamentals,
and Reusable Data Structures for C.
Roger also publishes an Internet newslet­
ter called ObjectWatch on SOM and can
be contacted via e-mail at roger@fc.net.

Schedule Programs &
Reminders Automatically ...

Can Your Test Tool
Tackle The Entire Testing

Process?
Business worf<flqvy<.;j3egr§esion ... Load ...
Concurrency ... MdlticiJser ... Str§SS ... Inte­
gration .. : are just a few ofUJesj(yations you

Chron v4.0
Scheduler for OS/2

Only $99
Site Licensing Available

Uses:
• Schedule backups and database maintenance
• Remind yourself of recurring meetings
• Schedule long-running or resource

consumptive tasks for after hours

Hilbert Computing
1022 N. Cooper
Olathe, KS 66061

Voice: (913) 780-5051
BBS/Fax: (913) 829-2450
CIS: 73457,365

Reader Service No. 21

need to deal With when test' ~ terprise
Systems> And, if you don't L . ..r system
the wayit'pgqing to be usedlfl~()tual oper­
ation, the test results may J:m!.JJJ[¢1iable.

Softbridge's AutomateqC · '"'acility has a
unique architecture deslg,,ed to perform
rigorous tests that PC!r§I!Jel actual operating
environments- environments where end-users
spread across an organization enter, access,
and act on informC1ti()n collaboratively.

ATF tests applications under Windows,
Windows NT, Windows 95 and all flavors of OS/2.

For information On ATF contact:
Softb(idg~, Inc.

125 Carl1bridgePark Dr.
Cambridge, MA 02140
Phone: (617) 576-2257

Fax: (617) 864-7747
E-mail: market@sbridge.com

Reader Service No. 22

05/2 M A G A Z I N E J U N E 1 9 9 6 49

.................. ~.~~---

