
I 

The World of Objects 

SOM 3.0: 
Lost in the Garden 

BY ROGER SESSIONS 

M 
onday, I got lost in a gar­
den. I was so sure I knew 
exactly which path to 

follow that I didn't bother to look 
carefully at the trail markings. When 
I should have been in my hotel 
room, I was under a waterfall. 

I stood under an outgrowth of 
rock while the water formed a perfect 
curtain before me. I was surrounded 
by plants that seemed vaguely famil­
iar and smells that seemed connected 
to an earlier time. Finding my hotel 
room now didn't seem so important. 

The Opryland Hotel in Nashville, 
Tennessee, is a series of buildings 
strung together like giant pearls on a 
string. To get from the main hotel to 
the conference rooms one must pass 
through the Conservatory, a very 
large, elaborate greenhouse. Actually, 
II greenhouse" fails to convey the 
scope of the Conservatory. The com­
plex is almost a self-contained eco­
system with trails, brooks, flowers, 
trees, and the waterfall at which I had 
found myself. 

I gave several talks at the IBM 
Technical Interchange about SOM 
(System Object Model) and distrib­
uted objects, and I made this nature 
trek many more times. Each time, I 
tried to retrace my steps back to the 
waterfall, but I was never again able 
to find this peaceful little spot. Per­
haps it had been nothing more than 
my imagination. Several times dur­
ing the week, I wondered if this 
interlude was symbolic of the IBM 
SOM strategy. 

SOM 3.0 
Over the last several months, I have 
been feeling much better about 
SOM. In the past, I've criticized the 

SOM marketing strategy. Since then, 
the SOM 3.0 beta has been made 
widely available on the IBM SOM­
Objects Web site. All of the major 
hardware groups within IBM have 
announced plans to support SOM. 
IBM has set up a focused SOM mar­
keting group under the leadership of 
Anthony Brown. 

I've met Anthony Brown several 
times and have been impressed. The 
SOM brand manager assisting Mr. 
Brown is Chris von Schweinitz. Chris 
has been a strong advocate for port­
ing SOM to other hardware platforms 
and is an effective spokesperson for 
SOM. Also assisting _Mr. Brown is 
Rick Clark, manager of Object Mar­
keting and Support. All of these peo­
ple are very capable. 

I called John Slitz, the IBM vice 
president of marketing for object­
oriented (00) technology and Mr. 
Brown's boss, just to make sure this 
group's future is secure. John assured 
me that having a marketing group 
completely focused on SOM is criti­
cal to the whole 00 technology stra­
tegy, and that this group has his full 
support. 

So for the first time, SOM's future 
seems to be in the hands of a group 
that understands its potential. Rath­
er than presenting an inconsistent 
11SOM solves all the world's prob­
lems" story, we actually may have a 
group that is focused on the raison 
d'etre of this product: distributed 
objects. 

SOMas a 
COABA implementation 
SOM 3.0 is first and foremost the 
industry's most complete implemen­
tation of the OMG CORBA specifica-

tion. The OMG (Object Management 
Group) is a consortium of hardware 
and software companies based in 
Framingham, Massachusetts. Its 
charter is to develop architectural 
standards for Distributed Object 
Computing (DOC). 

I believe DOC is an exciting field, 
and over the next five years will 
become the technology of choice for 
doing distributed computing appli­
cations. SOM is one of the industry's 
leading DOC technologies. With 
SOM, IBM is well positioned to lead 
in this whole technology area. 

The basic SOM architecture im~ 
plements the OMG-defined CORBA 
(Common Object Request Broker Ar­
chitecture). This architecture defines 
mechanisms for invoking methods 
on remote objects. I gave a general 
introduction to this architecture as 
implemented in SO¥ 2.1 in the 
April 1996 issue. 

There are at least three reasons 
you might use a CORBA architec­
ture. The first is that you want to use 
objects, but want them in a different 
process. T9at way, if they crash, they 
don't tak¢ you down with them. The 
second is that you want to invoke 
methods on an object, but the meth­
ods can be implemented more effi­
ciently on another machine because, 
say, the methods need to access data 
on that machine. The third reason is 
that you want to share objects with 
other processes. 

This third reason for using 
CORBA, sharing objects, is the most 
important from the perspective of 
DOC. When sharing objects, two or 
more processes make method call~ 
on the same remote object. As one 
process updates the state of the re-

05/2 M A G A Z I N E A U G U 5 T 1 9 9 6 47 



i 

~-. 
.\],! 

II 
(, 
I . 

I' I!. 
:[I 

II' 

I: 
l]._'_' 
I! 
I' 

il: 
tl

1 

iii 

1: 
I' 
II 

il· 
:1 ' 

ill 
II'< 
·'I 

l 

. ,, 
I 

---·----------
-~-----~---~-~

--~-=--=====~~
----

mote object (through remote meth­
od calls), those state changes are vis­

ible to other processes (also through 

remote method calls). If, for exam­
ple, one process orders two tons of 

bigDog food from an inventory 

object and another process checks 
the amount of bigDog food on hand 

in that same inyentory object, the 

second process will see the invento­
ry reduction resulting from the first 

process's order. 
SOM 3.0 has a number of impor­

tant enhancements over and above 

SOM 2.1, the current version. 
First of all, it is the first ver-
sion of SOM to support the 
CORBA IIOP (Internet Inter-

The World of Objects 
ject. A factory finder takes a descrip­

tion of what you want instantiated 

and where you want it instantiated, 

a:[ld finds a factory capable of doing 

that instantiation. 
The Life Cycle Service is actually 

much less important than you might 

think. The reason is that in distrib­

uted applications most processes do 

not instantiate objects. Most use ex­
isting objects. Consider our two pro­

cesses using an inventory object to 

order and track bigDog food. Neither 

process creates the inventory object. 

Millions of dogs 

the object they want to use. The 

mechanism CORBA defines to find 

objects is the Naming Service. 
The Naming Service can be 

thought of as a well-known black 

box. Everybody has a reference to 

the same black box. Anybody can 

insert an object into the black box 

and assign a name to that object. 

Anybody can ask the black box to 

find the object associated with a par­
ticular name, reducing the problem 

of finding shared, distributed objects 

to a much simpler problem of agree-
ing on names. As long as I 
know the name of the inven­
tory object, I can ask the 
Naming Service black box to 
find the inventory object. 

ORB Protocol): This protocol 
specifies how different imple­
mentations of the CORBA 
architecture interoperate with 
each other. With IIOP sup-

all over the world depend on Most distributed applica­
tions fall into one of three 
categories. Initialization pro-

transactional systems grams are those that instan­

port, SOM clients can invoke 
methods on objects living in 
non-IBM CORBA implemen­
tations, and vice versa. 

for their health and well-being, 
tiate objects, assign names to 
them, and place them into 
the Naming Service. Applica­
tion programs find and use 

Object services 
The second set of SOM 3.0 
enhancements has to do with 
IBM's implementations of 
the so-called CORBA Services. 
This group of OMG-defined 
frameworks is intended to 
solve common programming 
problems in distributed applica­

tions. Let's take a look at some of 

these problems and the solutions 

CORBA offers. 
The first problem is instantiation. 

Instantiating objects in a distrib­

uted-object system is a bit more 
complicated than instantiating ob­
jects in a simple single-process sys­

tem. Traditional C++ programmers 

simply call for a new object of a giv­
en type to be created. Distributed 

programmers need to specify not 

only the type of the object, but also 

its location. 
The process of instantiating ob­

jects is defined by the CORBA Life 

Cycle Service. In this model, objects 

are instantiated by special purpose 

objects called factories. A given fac­

tory object knows how to instantiate 

a given type of object in a particular 

process. 
To find the appropriate factory 

object, we use a factory finder ob-

48 05/2 M A G A Z I N E A U G U S T 1 9 9 6 

as do bank customers 

(who are obviously 

much less important). 

One uses the inventory object to 

place an order. The other uses it to 

check inventory levels. If the second 

process instantiated a new inventory 
object, that object would have a new 

state that would not include the 

updates made by the first process. 
This state discrepancy, obviously, 

would defeat the whole purpose of 

the distributed application. 
Web pages offer a useful analogy 

to a distributed object application. 

We do not-usually-create Web 
pages. Most of the time we are using 

existing Web pages, then moving on 

and using some new Web pages. The 

pages were there before we came, 

and they will be there for others to 

use after we are finished . 
The next CORBA problem has to 

do with finding objects. If our two 

inventory processes want to invoke 

methods on this existing inventory 

object, they must somehow reach 

out into the CORBA ether and find 

these objects. Our inventory 
processes are such programs. 
The vast majority of pro­
grams will fall into this cate­
gory. Clean-up programs do 
an ordered shutdown of a 
system. They remove the 
objects from the Name Ser­
vice and de-instantiate the 

objects, freeing up whatever re­

sources the objects are using. The 
initialization and clean-up programs 

are run by system administrators. 

The rest of us will be running appli­
cation programs. 

The next CORBA problem has to 

do with discovering that something 

. important has happened. Suppose, 

for er:ample, we want to have two 

dis~r'ibuted objects working together. 

One is an inventory object that 

keeps track of stock levels of various 

items. The other is a supply object 

that knows how to bring in new 

supplies when stocks of a particular 

item run low. How does the supply 

object know when the inventory 

object is running low on some item? 
The CORBA solution uses the 

Event Service. Objects have a de­
fined mechanism for defining, rais­

ing, and noticing events. An object 

might, for example, define a low­

bigDog-food event. The inventory 



item will automatically raise this 
event. A supply object could be look­
ing out for this event, and, when it 
"notices" the event has occurred, 
jumps into action. 

The Event Service divides objects 
interested in a given event into con­
sumers and producers. A consumer is 
an object that wants to know the 
event occurred. A producer is an ob­
ject that causes the event to occur. In 
our example, the supply object is the 
consumer, and the inventory object 
is the producer of the low-bigDog­
food event. 

The Event Service also supports 
two different programming models 
for events. In the pull model, the 
consumer continuously polls the 
producer to find out if the event 
occurred. In the push model, the 
producer tells the consumer the 
event has occurred. 

It is possible, but unusual, for 
event consumers and event produc­
ers to communicate directly with 
each other. More often, they com­
municate through event channels. 
An event channel becomes an inter­
mediary between consumers and 
producers. Event channels allow any 
number of objects to raise an event 
and any number of objects to notice 
the event. In our inventory applica­
tion, we could have many bigDog­
food suppliers watching for the low­
bigDog-food event who start a bid­
ding war as soon as the stock supply 
has gone down. They would do this 
by registering their interest in the 
low-bigDog-food event with the spe­
cific event channel coordinating the 
producers and.consumers of low-big­
Dog-food events. 

The Naming Service is a funda­
mental service that ties into both 
the Life Cycle Service and the Event 
Service. The Life Cycle Service builds 
its Factory Finder on top of the 
Naming Service. The Event Service 
uses the Naming Service to make its 
event channels known to the world. 
Anybody who would like to know 
about low-bigDog-food events would 
use the Naming Service to find, for 
example, the object named OutOf­
BigDogFood_Event_ Channel. Once 
one has a reference to the coordinat­
ing event channel object, one can 
register as either a consumer or a 
supplier of the relevant event. 

The World of Objects 

Late-Breaking News from the Object Front 
IBM has recently announced an "agreement to collaborate" with IONA Technologies Ltd. 

IONA produces Orbix, one of the most successful products to compete with DSOM. 
According to the press release "the announced collaboration with IONA provides expand­

ed platform support for IBM's SOM technology and increases our customers' choices in 
platform deployment." 
I have been asking all my IBM friends what this "collaboration" means technically, and 

nobody seems to know. So let me offer my own speculation. SOM offers a rich object 
model, a full implementation of ll)any CORBA object services, and a relatively nonportable 
ORB (DSOM). Orbix offers a minimal object model, almost no CORBA object services, but 
a highly portable and successful ORB. The most logical merger between these two prod­
ucts is to replace DSOM by Orbix, keeping the SOM object model and object services and 
the Orbix ORB. 

Should IBM follow this path, a significant delay of SOM 3.0 on all the IBM platforms 
would likely occur, assuming SOM 3.0 is where the merger will take place. Customers 
might also become wary of starting to prototype with the currently available beta SOM 
3.0, given the widespread changes one can expect as these two products become one. 

One of the biggest technical problems IBM will have to face in merging SOM and Orbix 
will be the SOM "thunk" technology. This technology was introduced in a somewhat mis­
guided effort to support the Direct to SOM C++ compiler technology, and is the least 
portable part of the entire SOM kernel. My guess is it will have to go, which may put the 
entire Direct to SOM (++strategy at risk. Personally, I don't feel this is a major loss, but 
others may not agree. 

Although any merger between SOM and Orbix will cause a lot of short-term pain, the 
long-term gains could be significant. The merger could add some desperately needed plat­
form coverage to SOM and help focus SOM on object distribution. It could improve Orbix's 
object model and object services story. Overall, I think this announcement may be good 
news, or at least could be once we figure out what the news really is. 

The Persistence Service solves the 
basic problem of having objects co­
ordinate their state changes with 
data in a database. Our inventory 
object would almost certainly need 
to update a corporate database to re­
flect changing supply levels. 

Distributed objects do not neces­
sarily need a Persistence Service to 
store data. An object can decide on 
its own either to refresh its data from 
a database or to update a database. 
But where applications need a stan­
dard interface to store data, the Per­
sistence Service comes in very handy. 

The Persistence Service is similar 
in concept to an object-oriented 
database. Both are able to store and 
restore object state. The Persistence 
Service differs in that it supports a 
wide range of underlying database 
products and data formats. 

Object-oriented databases are 

generally difficult or impossible to 
integrate with standard corporate 
databases and existing data formats. 
They offer little or no support for 
integration with existing applica­
tions. For these reasons, object-ori­
ented databases have had little 
impact on corporate applications 
development, and, in fact, may have 
actually inhibited the adoption of 
object technology in this area. The 
Persistence Service, on the other 
hand, is specifically designed to 
work well with existing databases, 
data formats, and applications. 

The Persistence Service needs 
some mechanism for moving data 
in and out of objects. This function­
ality is provided by the Externaliza­
tion Service. The Externalization 
Service is based on a mechanism 
similar to C++ streams. 

Most serious commercial appli-

OS/2 M A G A Z I N E A U G U S T 1 9 9 6 49 



cations need to work with objects 
within the context of traditional 
transactions. Suppose we have two 
inventory objects, one that repre­
sents a warehouse and one that rep­
resents a store. Let's say we have an 
order management system that 
moves inventory from the ware­
house to the store. If our application 
fails between the removal from the 
warehouse and the receipt by the 
store, we have lost a heap of bigDog 
food. Not a happy state of affairs. 

The Transaction Service ensures 
that either the bigDog food both 
leaves the warehouse inventory and 
enters the store inventory, or neither 
leaves the warehouse nor enters the 
store. Millions of dogs all over the 
world depend on transactional sys­
tems for their health and well-being, 
as do bank customers (who are obvi­
ously much less important). 

In SOM, the Persistence, Externali­
zation, and Transactional Services 
are closely related. Persistence uses 
Externalization to move data in and 
out of the object and coordinates its 
database update activity through the 
Transaction Service. A description of 
SOM 3.0 and the services related to 
persistence can be found in a brand 
new book called Object Persistence: 
Beyond Object-Oriented Databases by 
yours truly. 

The SOM implementation of the 
Persistence Service ships with support 
for using the IBM relational database 
DB/2 as a datastore. This work was a 
fun collaboration between myself, 
then of IBM Austin, and Guylaine 
Cantin, then and now of IBM Toron­
to. I have tried to entice Guylaine 
away from IBM to ObjectWatch, but 
so far, no luck. 

Back to the waterfall 
The implementation of the CORBA 
Services is an important milestone 
for SOM. It means that programmers 
can, for the first time, write truly 
COREA-compliant distributed appli­
cations using IBM's products. Not 
only that, but SOM is the industry's 
most complete implementation of 
these CORBA services. 

If SOM has the first decent 
CORBA implementation, and finally 
has its marketing group working 
well, why do I feel like I am search­
ing for my lost waterfall everytime I 

50 05/2 M A G A Z I N E A U G U S T l 9 9 6 

The World of Objects 
look at the IBM SOM strategy? The 
answer is simple: VisualAge. 

IBM was trying to deal with a 
very real issue: lack of tools support 
for SOM. The response to this prob­
lem was to reorganize the SOM pro­
ject under the Toronto tools group. 
This response shouldn't be too sur­
prising. The standard IBM response 
to any problem is to reorganize. In 
fact, the standard IBM response to 
the new moon is to reorganize. 

Placing SOM under Toronto tools 
definitely gave SOM some serious 
tools attention. It also put SOM near 
the VisualAge product line. Visual­
Age seems to be the class-library 
equivalent of a black hole, sucking 
in any framework that has the mis­
fortune to cross its sphere of influ­
ence. SOM was no exception. 

The current release of VisualAge 
includes about 500 classes (including 
SOM 2.1), most of which intemper­
ate poorly, if at all, with SOM. Ac­
cording to John Slitz, the VisualAge 
scheduled for release next year will 
include over 2,000 classes, a four­
fold increase over the current num­
ber. When John proudly made this 
announcement at the Technical In­
terchange, I believe a collective 
shudder ran through those of us 
who have actually had to deal with 
real class libraries. 

Robert LeBlanc tells me not to 
worry, everything is under control. 
Robert is the object-oriented appli­
cation development technology di­
rector. He owns VisualAge, SOM/ 
DSOM, OpenDoc, and all of the 
SOM object services. First, he says 
tha't IBM will continue to make SOM 
widely available through other chan­
nels besides VisualAge, including the 
Web, at little or no cost. Second, he 
says that VisualAge is maturing into 
a well-designed tool for developing 
client-server applications, and that 
SOM is an absolutely critical founda­
tion technology. Third, he says not 
to worry about the 2,000 class li­
braries. (I think he felt the shudder.) 
These classes will be organized into 
highly structured and layered frame­
works, and most programmers will 
deal with only a small number of 
these classes. 

I must admit to a bit of skepti­
cism here. IBM has not done a great 
job integrating even 500 classes. 

Now they are quadrupling the num­
ber. I'll be hoping for the best, but 
I'll believe it when I see it. When I 
asked Mr. LeBlanc what the recom­
mended programming layer will be, 
he gave me the standard IBM 
answer: different layers for different 
players. In other words, the cus­
tomers will have to sort this out. 

So where are we with all this? It 
looks like SOM is well on the road to 
recovery. A good CORBA implemen­
tation. A good marketing organiza­
tion. A lot of customer interest. But 
SOM is only one of a very large 
number of trails, brooks, trees, and 
flowers. And perhaps more than one 
waterfall. Let's hope it doesn't get 
lost in the garden. D1W 

Roger Sessions is president of Object­
Watch Inc., a company specializing in 
training and consulting in the use of 
SOM, DSOM, and related object-orient­
ed technologies. He has spoken at over 
30 conferences and has written exten­
sively. His three books include the 
newly published Object Persistence: 
Beyond Object-Oriented Databases. 
Roger also publishes the SOMobjects 
Home Page (http://www.fc.netj-roger/ 
owatch.htm) and an Internet newsletter 
called ObjectWatch on SOM. He can 
be contacted via e-mail at roger@(c.net. 

I 


