
The World of Objects 

A Kilometer Is Not 
a Kilometer 

BY ROGER SESSIONS 

B 
uddha is quoted as saying, 
"A rose is not a rose. There­
fore it is a rose." By that he 

means that until we learn to look 
beyond our preconceptions of a rose, 
we cannot see the true rose. We must 
look deeply and wisely at things in 
order to appreciate their real charac­
ter. In object-oriented programming, 
we often become attached to our pre­
conceptions. One of our favorite pre­
conceptions is performance. Many 
people reject the whole paradigm 
because of "the unacceptable perfor­
mance overhead." Others choose be­
tween languages based on how 
quickly a method can be invoked. 

In this column, we are going to 
look more deeply (and hopefully, 
more wisely) at the whole issue of 
performance in object-oriented sys­
tems. An analogy might help to start 
things off. Suppose you have been 
assigned the task of moving x units 
of y a distance of z kilometers. The 
first thing you do is look for a vehicle 
in which you can load up your x 
units of y. Let's say you have two 
vehicles from which to choose. The 
first takes 30 seconds to travel one 
kilometer. The second takes three 
minutes. Which vehicle is best suited 
to your task? The answer is: You 
don't know. It depends on what x 
and y are. If x is two dozen and y is 
eggs, then you will choose the sports 
car. If xis 100 tons andy is coal, you 
will choose the river barge. 

Performance factors 
Performance is only relevant when 
workload is taken into account. 
When discussing the performance of 
method invocations, we need to look 
at three factors of workload: the cost 

42 05/2 M A G A Z I N E S E P TE M B E R 1 9 9 6 

of invoking the method, the number 
of times the method will be invoked, 
and the amount of work the method 
will do. The relationship between 
these factors is as follows: 

TC = (CIM + COW) * NMI 
where 

TC Total Cost 
CIM Cost of Invoking 

Method 
COW Cost of Work (in 

the method> 
NMI Number of Method 

Invocations 

In general, when we write soft­
ware, we want the Total Cost (TC) to 
be as low as possible. We can keep it 
low by focusing on any combination 
of the three factors tbat contribute to 
TC. Let's look at some case studies. 

Case1 
In case 1, let's say the Cost of Invok­
ing a Method (CIM) is equal to 0.80 
microseconds. Keep in mind that 
1,006 microseconds equals 1 millisec­
ond and 1,000 milliseconds equals 1 
second. Let's also say that the Cost of 
Work (COW) of that method is 1.0 
microsecond. You might assume that 
the CIM is a significant factor in this 
equation, but wait! Suppose the 
method is only invoked once in a 
program that takes 10 seconds to 
run. The TC for that method is 

TC (CIM + COW) * NMI 
(0.80 microseconds/invo­
cation + 1. 0 mi crosec­
onds/invocation) * 
1 invocation 
(0.80 + 1.0) * 1 
1.80 microseconds 

According to these calculations, 
our method only contributes 1.80 
microseconds out of a total run time 
of 10 seconds (10 million microsec­
onds). The total fraction of time spent 
in this method is 1.80/10,000,000-
an infinitesimal portion. People wor­
rying about the performance of this 
method should be worrying more 
about their own performance! 

Case2 
Let's look again at case 1, but this 
time, let's ask a different question: 
How many times would we have to 
invoke the method before the TC of 
that method would equal at least 1% 
of the run time of the whole pro­
gram? The run time of the whole 
program is 10 seconds, or 10 million 
microseconds. We will reach 1% of 
10 million microseconds when we 
reach 100,000 microseconds. Plug­
ging these new numbers into the 
equation yields 

TC = (CIM + COW) * NMI 

100,000 microseconds= 

/ 

100,000 

Therefore, 

(0.80 microseconds/ 
invocation + 

1. 0 microseconds/ 
invocation) * 
x invocations 
(0.8 + 1.0) * X 

1. 8 X 

X 100,000/1.8 
= 55,555 

In other words, we have to invoke 
this method more than 55,000 times 
before it contributes even 1% to the 
run time of this program. 



Relative costs 
of invoking methods 
What is the cost of invoking a meth­
od? The answer to this question de­
pends both on the type of method 
and what we are using as a base line. 
Let's look at the cost of running a 
given code segment using each of 
five different coding techniques. 
Each code technique offers both 
increased benefits and increased 
costs. In this section, we'll see how 
these two are related. 

When studying the measurements 
I give, you should focus more on the 
relationships between numbers and 
the measurement techniques rather 
than on the absolute numbers, which 
will change depending on compiler 
optimization, machine configura­
tion, and environment conditions. 
My particular machine is a lOOMHz 
processor with 16MB of memory, and 
I have not used any code-optimiza­
tion compiler switches. 

Let's start by looking at standard 
C++ virtual method invocation. My 
C++ dog definition and imple­
mentation is shown in Listing 1. 

As you can see from Listing 
l, my dog supports a method 
named runOneKilometer. I am 
going to measure the cost of 
invoking this method. 

My measurement program is 
shown in Listing 2. 

As you can see from Listing 
2, I can run this program with 
various numbers of iterations. I 
usually run the program at least 
three times choosing iteration 
numbers resulting in run times 
between 10 and 240 seconds. 
Less than that makes for in­
accurate measurements. More 
than that makes for a high bore­
dom factor. I start my measure­
ments as soon as the iteration 
starts and stop when the itera­
tion stops. 

I ran this program with 20, 
50, and 100 million iterations, 
yielding run times of 16, 43, and 
81 seconds, respectively. The 
program automatically calculates 
the milliseconds per kilometer, 
which for my runs came out to 

The World of Objects 
be .00080, .00086, and .00081, respec­
tively. Let's use the average: .00082 
milliseconds. 

Next, let's look at our base 
line, which does the equiva­
lent work without using ob­
ject-oriented programming. 

I have used two baselines. 
The first (Listing 3) does the 
equivalent work completely 
inline. The second (Listing 4) 
does the equivalent work in 
a procedure call. 

I ran Listing 3 (the inline 
program) with 100, 200, and 
500 million iterations, yield­
ing run times of 19, 38, and 
94 seconds, and all weighing 
in at the identical .00019 
milliseconds per iteration. 

I ran Listing 4 (the proce­
dural version) with 50, 100, 
and 200 million iterations, 
yielding run times of 29, 57, 
and 113 seconds, weighing 
in at .00056 ± .00001 milli­
seconds per iteration 

The difference between 
using C++ virtual methods 

(.00082 milliseconds) and procedure 
calls (.00056 milliseconds) is .00082-
.00056, or .00026 milliseconds~ The 

OS/2 M A G A Z I N E S E PT E M B E R l 9 9 6 43 



difference between using procedure 
calls (.00056 milliseconds) and inline 
code (.00019 milliseconds) is .00056-
.00019, or .00037 milliseconds. 

In other words, it is significantly 
more expensive to go from inline 
coding to procedural coding than it 
is to go from procedural coding to 
objects. Yet, the wisdom of proce­
dures is universally accepted, while 
many wonder if they can "afford the 
penalty" of using objects. 

This is a very important point and 
cannot be overemphasized. The use 
of object-oriented programming does 
not result in any significant perfor­
mance degradation. Please do what­
ever you can to dispell this myth. 

Let's go higher up the food chain. 
Standard SOM objects add language 
independence and upward binary 
compatibility to C++ objects. DSOM 
adds the ability to distribute objects 
across machines. What do we pay for 
these benefits? 

Listing 5 shows a SOM equivalent 
of the C++ dog in Listing 1. 

This dog can be instantiated local­
ly or remotely. Listing 6 shows a local 
instantiation; Listing 7 shows a re-

44 OS/2 M A G A Z I N E S E P TE M B E R 1 9 9 6 

The World of Objects 
mote instantiation. Listing 7 is sub­
stantially like Listing 6, so I have 
shown only the significant difference, 
which is in the object instantiation. 

The run time for Listing 6, which 
adds standard SOM benefits to the 
C++ object, is 13, 24, and 59 seconds 
for 10, 20, and SO million invoca­
tions, weighing in at .0012 millisec­
onds. The difference between SOM 
and C++ (about .00038 miliseconds) is 
similar to the difference between C++ 
and procedures (.00026 milliseconds). 

Let's put this in context of some 
actual work. I modified Listing 2 to 
measure the time required to fill a 
100-byte buffer with a given charac­
ter. Most of the code is unaffected. 
However, the new loop is shown in 
Listing 8. 

The program shown in Listing 8 
took .019 milliseconds/iteration to 
run. How would the cost of running 
one iteration of this code as a C++ 
object compare to the cost of run­
ning one iteration of this code as a 
SOM local object? Let's go back to 
our formula: 

TC = CCIM + COW) * NMI 

where 
TC Total Cost 
CIM Cost of Invoking 

Method 
COW Cost of Work Cin 

the method) 
NMI Number of Method 

Invocations 

For C++, the cost for one iteration 
would be: 

TC (.00083 + .019)milli­
seconds/iteration 
.01983 

For SOM, the cost for one iteration 
would be: 

TC (.0012 + .019) milli­
seconds/iteration 
.0202 

The difference between SOM (lo­
cal) and C++ both doing this rela­
tively modest amount of work is less 
than 2%. 

What about distributing the object 
using DSOM? Here I would expect to 
see a significant decline because of 

Listing 4: Procedural program. 



the work involved in marshalling 
method calls. (If unfamiliar with 
DSOM, see the April 1996 issue, "Dis­
tributed Objects," pp. 44-47.) 

I ran Listing 7 in the best possible 
case, on a single machine with no 
overhead for networking. I was using 
the beta version of SOM 3.0. 

I ran 10, 20, and 30 thousand iter­
ations. I had to go from millions of 
iterations to thousands to complete 
the tests in a reasonable time. The 
iteration run times were 66, 131, and 
199 seconds, for an average iteration 
time of 6.59 milliseconds. 

This average iteration time was al­
most a 5,500-fold decline from local 
SOM. In other words, you could run 
almost 5,500 local SOM methods for 
the cost of one remote DSOM meth­
od-which may seem like a huge 
degradation, but what are we getting 
for this cost? Object Distribution! 

Comparing DSOM to C++ virtual 
methods doesn't make sense. We 
would never use DSOM for small 
C++-like classes. A fair comparison is 
DSOM to Remote Procedure Calls 
(RPC), the procedural equivalent to a 
remote method call. Here DSOM 
compares very favorably. 

The cost of running DSOM across 
a network is approximately twice the 
cost of running it on a single ma­
chine, bringing the cost to about 14 
milliseconds, about 30% more expen­
sive than running RPC (RPC perfor­
mance numbers provided by Virgil 
Albaugh). This cost difference is simi­
lar to the cost difference between pro­
cedures and virtual methods. Keep in 
mind that DSOM 3.0 is still in beta 
and will probably improve. 

In order to use DSOM effectively, 
you need to make sure that the cost 
of running the method is at least 10 
times the cost of invoking the meth­
od. This means that DSOM should 
not be used for method workloads of 
less than about 140 milliseconds. 

On my system, 70 milliseconds is 
approximately the time required to 
open a file, write a single element, 
and close the file. For this workload, 
DSOM will contribute only about 
20% of the total overhead of the 
method invocation, about the same 
as RPC would have contributed. 

There is another scenerio under 
which DSOM makes sense. If the 
number of method calls is low, the 

The World of Objects 

OS/2 M A G A Z I N E S E P TE M B E R l 9 9 6 45 

~- ~-~ ---- ---------~------------------"' 



1\ 
11l I 

iJI , 

il 

II 
I! 
I! 
II 
:i: 

•····················································· 
The World of Objects 

overall cost of DSOM will also be 
low. For example, 10 DSOM method 
calls in a program run time of 10 sec­
onds will contribute about 140 mil­
liseconds-about 1 o/o of the total run 
time. These numbers, however, do 
not include the cost of "finding" 
remote objects, which is very signifi­
cant in DSOM, but which I am as­
suming is part of the start-up cost of 
the program. 

So we have two choices with 
DSOM. We can either use it for ex­
pensive method calls, or we can use 
it sparingly. Either gives us the bene­
fits of Distributed Object Program­
mid'g with reasonable cost. And 
regardless of how we use DSOM, its 
cost is comparable to other distribu­
tion techniques such as RPC. 

Now, those that expect to take 
existing C++ classes, rewrite them 
with DSOM, and have all their classes 
magically distributed, are in for a 
nasty shock. Object distribution re­
quires careful planning at the front 
end of a project. Not a bad place to 
spend some of your consulting dol­
lars, if I may be forgiven for such a 
self-serving point of view. 

Epilogue 
Once again, keep in mind that the 
absolute numbers I have reported here 

are much less important than the rela­
tionships between the numbers. There 
is no substitute for running your own 
performance tests. 

To help you in this endeavor, all of 
the code in this article is available 
from the SOMObjects Home Page, 
located at http://www.fc.net/-roger/ 
owatch.htm. Look for a link leading 
you to code for OS/2 Magazine articles. 

Always remember that the cost of a 
method is related to the cost of the 
method invocation, the workload of 
the method, the number of times the 
method will be invoked, and the over­
all run time of the program. A method 
is not a method. A kilometer is not a 
kilometer. A rose is not a rose. liEm 

Roger ~~ssions is president of Object­
WatcH Inc., a company specializing in 
training and consulting in the use of 
SOM, DSOM, and related object-oriented 
technologies. He has spoken at over 30 
conferences and has written extensively. 
His three books include the newly pub­
lished Object Persistence: Beyond 
Object-Oriented Databases. Roger also 
publishes the SOMobjects Home Page 
(http://www.fc.net/-roger/owatch.htm) 
and an Internet newsletter called 
ObjectWatch on SOM. He can be con­
tacted via e-mail at roger@(c.net. 

-I 


