
The WoPid of Objects

Ten Rules for
Distributed Object
Systems
BY ROGER SESSIONS

I
t's sad watching a client fail.
Recently one of my clients failed.
The company had attempted to

build a relatively simple distributed
object system. About 10 person-years
had been invested in the project. The
company had promised that the next
major release of this product would
be based on distributed objects. The
project had high visibility. And the
whole thing went down the drain.

Like most failures, this one was
predictable. The developers had little
experience in object-oriented pro­
gramming, no expertise in distributed
object systems, and almost no time
allocated for training. They immedi­
ately started designing an overly com­
plex system with no provision for
testing or debugging.

As the second extension of the
project due date approached, the pro­
ject managers started getting desper­
ate. The system was slow and lacked
much of the committed functionality.
What functionality it did have would
occasionally work, but more often
would hang or crash. No one had any
idea why it worked when it worked,
and why it didn't when it didn't.

So the managers made a desperate
move. They called in a consultant:
me. They told me they had to ship
within two weeks. They wanted me to
tell them how to fix their problems­
in less than two days.

I spent a day with them reviewing
the design. I had no choice but to
deliver the bad news. The design was
a mess. The implementation was
hopelessly flawed. The best option
was to flush it all and start again.

I tried to sound as positive as I
could, given the depressing circum­

/ stances. I used phrases like, "This is an

34 05/2 M A G A Z I N E 0 C T 0 B E R 1 9 9 6

excellent prototype that should help
clarify your goals," and "This is a real­
ly nice demonstration of a system bot­
tleneck-see how all these little arrows
are all pointing at the same object?"
But the message was clear. The team
had no hope of meeting its deadline.
The system had rio more chance of
working than a dog has of flying.

This situation started me thinking.
Obviously, this client had violated
many of the basic rules of developing
distributed object systems. But just
what are these rules?

Over the many years that I've been
in this field, I've designed, implement­
ed, and consulted on many distrib­
uted object systems. I've given lectures
at more conferences than I can count
and spoken to more people than I can
even guess at about using distributed
objects. I've heard and witnessed
many stories of success and many of
failure. So what determines success or
failure when using this technology?

When a distributed object system
works well, it is beautiful and harmo­
nious. When it doesn't, it's repugnant
and irritating. So what makes one dis­
tributeq system a symphony, and
what makes another a cacophony?

I believe in 10 basic rules for imple­
menting distributed object systems;
rules so basic that anyone observing
all 10 is almost guaranteed success,
and anyone who ignores even one is
headed down a dark path indeed.

Rule one
Understand what a distributed
object is (and isn't). This is a funny
rule, isn't it? Why would people use dis­
tributed objects without understanding
what they are? However, this rule is
commonly violated.

Many people begin with an in­
complete understanding of object-ori­
ented programming and then try to
extrapolate this pseudo-understanding
to distributed objects. Others who do
understand object-oriented program­
ming then assume distributed objects
are the same thing. They are not.

Distributed objects are more like
components than objects. They are
large things that know how to per­
form specific functions for you. They
generally provide some kind of busi­
ness capability.

Let's consider a few of the traits
that differentiate nondistributed ob­
jects (such as C++ objects) from distri­
buted objects.

• Purpose. The purpose of a nondis­
tributed object is to manage the
complexity of the data and algo­
rithms required to solve some pro­
gramming problem. A good exam­
ple of a nondistributed object is a
collection class. The purpose of a
distributed object is to perform a
related set of business functions
for multiple remote clients. A good
example of a distributed object is
~Jil inventory object.

• ,Client view. The client view of a
nondistributed object is a class,
which includes the definitions of
methods, the algorithms for those
methods, and the internal data of
a nondistributed object. A given
class can have only one implemen­
tation. The client view of a distrib­
uted object is an interface, which
only defines the behaviors that
clients can expect the distributed
object to perform. A given inter­
face can (and often does) have
many implementations.

• Performance. The cost of a
method invocation on a nondis­
tributed object is measured in
tenths of a microsecond. For a non­
distributed object, you can ignore
the invocation costs of methods
when determining its performance.
The cost of an operation invoca­
tion on a distributed object is mea­
sured in milliseconds. You must
consider this cost very carefully
when analyzing the overall system
performance.

• Complexity. A nondistributed ob­
ject is typically low in complexity
and is often composed of only a
few hundred lines of code. The de­
sign goal of nondistributed objects
is to be simple. A distributed object
is usually quite complex and com­
posed of perhaps hundreds of thou­
sands of lines of code-a single dis­
tributed object may actually consist
of dozens, or even hundreds, of
local, nondistributed objects, but if
so, their existance is invisible to the
client.

• Number. Nondistributed-object­
based systems are typically com­
posed of a large number of classes
(perhaps thousands) and an even
larger number of nondistributed
objects. Distributed-object-based
systems are typically composed of
a small number of interfaces (per­
haps 10) and not many more dis­
tributed objects (perhaps dozens at
most).

• Location. Nondistributed objects
are always located in the address
space of their clients. Distributed
objects are never located in the
address space of their clients.

• Concurrency. Nondistributed ob­
jects are only used by a single cli­
ent and don't have to worry about
concurrency. Distributed objects
are used by a large number of cli­
ents and have to deal with com­
plex concurrency issues.

Rule two
Use a standard. Distributed object
systems by their very nature need to
span languages, computers, operating
systems, and network protocols. Your
only hope of managing this complexity

The World of Objects
is to base your distributed object sys­
tems on well-understood standards
with many available implementations.

The most widely recognized dis­
tributed object standard is the COREA
standard, based on work done by the
Object Management Group (OMG).
Fortunately, one of the industry's best
implementations of this standard is
available to OS/2: SOMobjects. SOM­
objects will soon be available on all
IBM platforms and many non-IBM
platforms as well. OS/2 is therefore an
ideal platform for developing distrib­
uted object systems.

Basing your distributed object sys­
tem on the COREA standard will give
you the following important benefits:

• You will have the widest possible
choice of machines on which to
place objects. Objects that need
close integration to databases can
be placed on the database host.
Objects that need high reliability
and scalability can be placed on a
Tandem machine, which has port­
ed a version of SOM designed to
support such features. Objects that
make use of special AS/400 features
can live on that host.

• You won't have to worry about
underlying communications pro­
tocols. The CORBA architecture
hides communications protocols
under operation invocations. You
will never know what communica­
tions protocol you are using.

• You l'VOn't have to worry about the
language that is being used to im­
plement your objects. Because
COREA is a well-accepted standard,
it is or will be supported by most
popular programming languages.

• You will have access to objects
being developed by independent
software houses. The COREA stan­
dard is expected to enable a whole
software components industry.

• You will have access to a host of
well-defined object services, such
as persistence, security, naming,
events management, and many
others. These services will simplify
your systems development and
increase the portability of your
products.

• You will be independent of any
one vendor. Although IBM's SOM­
objects is one of the leaders in the
field, there are at least five other
significant competitors that offer
CORBA implementations.

Rule three
Design distribution into the sys­
tem from the beginning. If you
have followed rule one, then you under­
stand the difference between regular
objects and distributed objects. Rule
three says you should deal with the var­
ious distribution issues from the begin­
ning of your design. You don't need to
implement every design feature imme­
diately. In fact, it's better to get the
basics working before you worry about
the details. However, you should under­
stand and plan for the problems that
may arise as you move to a highly dis­
tributed system.

You should consider the following
issues, most of which are irrelevant
for nondistributed objects:

• Where will your distributed objects
live, and why?

• How will information pass be­
tween the distributed objects?

• What is the maximum throughput
for each distributed object, and
where in your overall system will
bottlenecks occur?

• How many users must the system
be prepared to accomodate?

• How will your system scale up
when the number of users in­
creases, anticipating, at worst, that
your system actually works, and
the whole world wants to use it?

• How w}ll distributed objects be
instantiated and de-instantiated?

• How will users find the distributed
objects they need? Will they use a
naming service, a trading service,
or some other mechanism? How
will the objects become registered
with the appropriate services?

• How reliable do you need the
object references to be? If a process
has a reference to a remote object,
and the server containing the
remote object goes down, what are
your expectations of the system?

• How will your distributed objects

05/2 M A G A Z I N E 0 C T 0 B E R 1 9 9 6 35

~-- ~ ~~~~---------------~-

i
!
~:

, r .•. l
r
II
I I

[
i

I
1
I
1,'

I
i
t

!I

•..

keep their stateas synchronized
with external databases?

• How will your distributed objects
participate in transactions?

Rule four
Figure out how your distributed
objects will interact. Typically, the
interactions between nondistributed
objects are fairly simple. A client object
knows about a target object either by
maintaining a reference to the target
object as part of its state or by having
the target object passed in as a parame­
ter to one of the client object methods.
The client object then invokes methods
directly on the target object.

The interactions between distrib­
uted objects include many more pos­
sibilities, in terms of both how client
objects find target objects and how
the client objects invoke methods on
the target objects.

Strictly speaking, a distributed
client object never has a direct refer­
ence to a distributed target object. In­
stead, the distributed client object has
an indirect reference that is interpret­
ed by the server on which the target
object lives. Thus, the server always
has an opportunity to redirect the
method to another object, or another
server, should it choose to do so.

Even indirect references are not
commonly used by client objects. A
client object will more commonly
use a naming service, trading service,
or property service to find an appro­
priate target object with which to
interact.

Sometimes, no direct interaction
occurs between a client and its target
distributed object, as when the inter­
actions go through the event service.
When using an event service, one
object may simply notify the world
that a particular event has occurred,
and any object that wants to deal
with that event is free to do so.

These examples are just a few of
the possibilities for distributed object
interaction. You need to understand
what possibilities exist and which will
best meet your needs.

Rule five
Avoid writing code whenever
possible. The COREA standard is par­
ticularly suited to code reuse. The op­
portunities for code reuse fall into two
general areas: buying and wrapping.

36 OS/2 M A G A Z I N E 0 C T 0 B E R 1 9 9 6

The World of Objects
Because you have been so clever as

to build your system on a well-accept­
ed standard (see rule two), you will
have more opportunities to purchase
prebuilt distributed objects. Because
you have been so clever as to choose
a standard that is object-based, rather
than component-based, you can easi­
ly specialize these objects to do exact­
ly what you want. This discussion is a
bit futuristic, since the market for
object-based components is still in its
fledgling stages, but the future is
bright.

When you cannot purchase, you
can often wrap. Because CORBA has a
clean separation between interface
and implementation, a client has no
dependencies on how a method is
actually implemented. A method can
be implemented by wrapping an exe­
cutable program, an existing object
method, a subroutine, a shell script, a
stored function in your database, or
almost any code package you can
imagine.

Do not fall into the trap of think­
ing you must implement every dis­
tributed object operation from
scratch. Search every nook and cran­
ny for reuse opportunities.

Rule six
Prototype. Okay. You think you're
smart. You've followed rule one and
think you understand what distributed
objects are. You've followed rule three
and have done a careful distributed sys­
tem design. You've followed rule four,
and understand all the interactions
between your distributed objects. But
you aren't smart. You're stupid. If you
knQw you're stupid, then there's still
hope for you. If you think you know
what you're doing at this point, then
you're in serious trouble.

Now is the time to roll up your
sleeves and prototype. Make sure the
logic of your operation implemen­
tations actually works. Make sure
that the object interactions work the
way you thought. Make sure the
servers' robustness matches your ex­
pectations. Make sure the system
scales up as predicted. Make sure the
performance of operations is as you
expected. I assure you, you will find
more design problems in the first
two weeks of prototyping than you
would in six months of arguing on
whiteboards.

In reality, there is no such thing as
skipping the prototyping step. People
merely delude themselves into believ­
ing that they can do so. They will
learn the hard way.

Don't be ashamed of being stupid.
I am stupid, and I've probably been "in
this field a lot longer than you have.

Rule seven
Distribute incrementally. Testing
and debugging are more difficult when
objects are distributed than when they
are nondistributed, and more difficult
still when they are distributed remotely
than when they are distributed on the
same machine.

You should, therefore, locally test
as much of your system as you possi­
bly can. The technology for debugging
and validating nondistributed objects
is far more advanced than the tech­
nology for debugging and validating
remote objects. Once you have every­
thing working locally, move the ob­
jects onto other processes on the same
machine. Once that works, move the
objects onto other machines.

You may be tempted to skip this
step, but you'll pay dearly if you do.
You'll spend weeks trying to find
problems that would've been obvious
in local mode with a good debugger.

Rule eight
Spend your time designing, not
choosing design tools. Keep in
mind that distributed systems are com­
posed of a relatively small number of
complex objects. You really don't need
complex design tools to design distrib­
uted object systems. I've seen many pro­
jects where protracted religious wars
were fought over design methodologies. ·
I've yet to see one project where the
choice of a particular design methodol­
ogy or;lbol made a bit of difference to
the eventual success or failure of the
project.

Some design tools claim to directly
produce IDL (the language that de­
scribes the interfaces of CORBA ob­
jects). I say, "Who cares." IDL isn't
that difficult to write. Use whatever
tools you want. Just keep them sim­
ple. And don't waste a lot of time
arguing about them.

Rule nine
Allow time. Many projects get into
the distributed object arena thinking it

will allow them to develop their first
system in a fraction of the time it would
take using conventional technology.
Please. Get real.

If this project is your first, you have
a lot of learning to do. Your team's
first learning task is to make sure they
really understand object-oriented pro­
gramming. Once they've gotten past
that hurdle, they need to understand
distributed objects. The leap from
nondistributed object-oriented pro­
gramming to distributed object-orient­
ed programming is at least as great as
the leap from procedural to object-ori­
ented programming.

It will probably take people a long
time to master these new ideas. They
are going to make many mistakes
(see rule six). Plan adequate time for
learning the theory of distributed
objects and the many parts of the
COREA architecture. Plan for lots of
hands-on training time. Eventually,
you'll get to the point where your
system development time is dramati­
cally reduced, but not on your first
system.

The World of Objects
Rule ten
Focus on expertise early. You
cannot design and implement a decent
distributed object system without some
expertise on board-not only expertise
in object-oriented programming, but
expertise in distributed object systems.

If you have in-house experts, bring
them in early. If you don't, hire a
consultant and do so before you have
your first design meeting. You may
only need a few weeks or a few
months of a consultant's time. What­
ever you need, the cost of bringing in
a consultant is minuscule compared
to the cost of spending person-years
going down rat holes and blind alleys
that could have been avoided, or of
building systems that fail the first
time your customers try to use them.

Speaking as one who has been
there, I can tell you: It's a lot more
gratifying to help design and build a
system that works well than it is to
have to tell somebody, after the fact,
that a brand new, multimillion dollar
creation isn't worth the disk space on
which it's written.

Why does this publication
and 1600 others open their
books?

Every year?

Believe it or not, some publications actually keep their subscribers
undercover. They steadfastly refuse to let BPA International or any
other independent, not-for-profit organization audit their' circulation
records. Who's to say their circulation is what they claim?

On the other hand, 1600 publications - including this one - are
members of BPA lnlemalional. Every year BPA lntemalional
auditors scrutinize our circulation records and verify the number of
our subscribers, their geographic distribution and other important
information such as business and occupational data.

Our annual SPA audit helps advertisers determine if they are
reaching the right people with their products' messages.

Bul more important, a BPA audit helps you, lhe subscriber.
Because the more advertisers know about our circulation, the
better they can provide you with information that meets your needs.
Similarly, the more we know, the better able we are to give you
targeted news and information.

BPA International: the proven leader in circulation marketing
intelligence for business and consumer media.

270 Madison Avenue, New York, NY 10016·0699.
(212) 779·3200; fax (212) 779·3615.

Epilogue
That's it. My 10 rules for developing
and implementing distributed object
systems. Perhaps I should have added
an eleventh rule: Have fun. This is a
great technology. It's fantastic to con­
duct an orchestra of distributed
objects, each doing its own unique
thing, yet cooperating in a wonderful,
harmonious, symphonic movement.

OS/2 is an ideal platform for trying
out this technology. Now go to it.
Create a masterpiece. illim

Roger Sessions is president of Object­
Watch Inc. His latest book is Object
Persistence: Beyond Object-Oriented
Databases. Roger also publishes the
SOMobjects Home Page (http://www.
fc.net/-roger/owatch.htm) and an Inter­
net newsletter called ObjectWatch on
SOM. He can be contacted via e-mail at
roger@(c.net.

Reader Service No. 37
05/2 M A G A Z I N E 0 C T 0 B E R 1 9 9 6 37

__ ,, ___ .. -------

