:
Degéglgper

The World of Objects

et’s try a quick psychological
I test. I'll put forth a word, and 1
want you to say the first word
that comes to mind. Are you ready?
Here's the word: SOM. Most likely, this
word elicited one of three reactions:
perplexity, a better object model, or a
better C++.

SOM technology was first intro-
duced with OS/2 2.0. The first-ever arti-
cle about SOM appeared in the 1992
winter issue of 08/2 Developer (p.107),
written by Nurcan Coskun and myself.
Over the following three years, SOM
was imbued with a variety of new fea-
tures, including one that should have
guaranteed it a place in the annals of
software history.

This critical feature added to SOM
2.0 was the ability to distribute objects.
SOM was the first serious commercial
implementation of the Object Manage-
ment Group’s CORBA model, which
defined an industry standard architec-
ture for distributing objects.

The fact that so few people think of
object distribution when they hear the
word SOM, is a sad testimony to IBM’s
marketing ability or lack thereof. IBM
has consistently failed to realize the
importance of object distribution and
has given a muddled story of what
SOM is all about.

This reality is SOM’s gloomy past.
Fortunately, there is some bright news
on the horizon. The upcoming release
of SOM has been redesigned, with
object distribution as the focal point of
the release. If IBM can figure out how
to market this capability, with half the
aplomb that Sun has shown toward
marketing Java (a big “if"”), we might
have a real winner.

In this column, let’s introduce writ-
ing distributed objects with SOM. All of

44 OS/2ZMAGAZINE APRIL 19%¢

Distributed
Objects

BY ROGER SESSIONS

Figere 1: Distributed SOM orchitecture.

the code examples work with the cur-
rent 2.1 release. To simplify the exam-
ples and concepts, we'll use the C lan-
guage bindings for SOM.

Distributed

object applications
Distributed object technology is impor-
tant, because it’s the most natural mech-
anism we have for doing distributed pro-
gramming. If we are object-oriented pro-
grammers, then we already know about
combining behavior and data into little
packages that we call objects. With
object distribution, we now have the
ability to take these little packages and
move them to other processes.

From the program’s point of view,
no difference exists between using local
or remote objects. In either case, we'll
have an object. That object contains
state or data. We interact with the
object through well-defined method
invocations. Because the state of an
object is only of internal concern to the
object, we don’t care where that state
actually resides. Our code works fine, as
long as the invoked methods can find
the right target object, regardless of

Figere 27 Distributed SOM architecture as
seen by dlieat.

whether that object lives in our address
space or in another.

It's similar to the concept of
remote procedure calls (RPC), which
is probably the most widely recog-
nized paradigm for distributed pro-
gramming. However, procedure calls
can only be distributed when proce-
dures have been carefully designed
with distribution in mind. Objects are
naturally encapsulated, so any well-



The World of Objects

designed object is a good candidate
for being a unit of distribution.
Besides, object-oriented programming
has a host of advantages over proce-
dural programming.

Any business that organizes its activ-
ities over a network of computers is a
natural for distributred object technol-
ogy, especially if these businesses are
also under pressure to rapidly respond
to changes in the marketplace. Prime
examples include banks, insurance
companies, and retail outlets, among
many others.

Basic SOM definitions
Let’s take a closer technical look at this
technology. We start by looking at
some distributed SOM definitions. Dis-
tributed SOM is often referred to as
DSOM, but in SOM 3.0 the distinction
between SOM and DSOM will likely be
de-emphasized.

Object: An object is just that, an
object; it knows how to respond to
method invocations. If it’s a dog object,

say Snoopy, it knows how to respond
to the bark method.

Proxy: A proxy looks similar to a tra-
ditional object, but is just a front for an
object. It responds to the same meth-
ods as traditional objects, but does so
by forwarding the invocation to some
actual object. If it’s a dog-proxy object,
say the Snoopy-proxy, it implements
bark by interacting with SOM to for-
ward the bark invocation to the actual
Snoopy object. From the client’s per-
spective, the Snoopy-proxy appears to
actually be Snoopy. Only SOM knows
the difference.

Server Process: All objects live in
some process running on some
machine. The process in which the
actual Snoopy lives is called the server
process for Snoopy, or sometimes just
the Snoopy Server.

Client Process: All method invoca-
tions originate from some process. The
process, from which a particular bark
invocation originates, is considered the
client process for that particular
method invocation. Ma-
ny different client pro-

Listing 1: C implementation of

dog.

cesses can be invoking methods on a
given Snoopy.

Object References: A proxy can be
turned into an object reference, which
can be used to create a new proxy. The
new proxy will then be a front for the
same object as the original proxy. For
example, if we create an object refer-
ence from Snoopy-Proxy and then gen-
erate a new proxy from that object ref-
erence, say Snoopy-proxy2, both Snoo-
py-proxy and Snoopy-proxy2 will pass
their method calls through to the same
object, namely, Snoopy. Object refer-
ences take the physical form of a stan-
dard C/C++ string.

Object Request Broker (ORBs): The -
ORB is an underlying distribution
mechanism used to pass information
between proxies and objects. It’s not
visible to the client or object code.

SOMD_OBJECTMGR: SOMD_Ob-
jectMgr is a global object available to
any distributed SOM process. This glob-
al object knows how to, among other
things, instantiate objects remotely, cre-
ate object references from proxies, and
create proxies from object references.

Listing 2: Instantiating Snoopy.

OS/2MAGAZINE APRIL 19946 45



The World of Objects

The architectural relationship
between these components is shown in
Figure 1. We have a lot of flexibility in
configuring client and server processes.
For example, they could both be run-
ning in a single machine, they could be
on two separate OS/2 boxes, or the
client could be running on an OS/2 box
and the server on an MVS, AIX, or AS/
400 box—a configuration particularly
likely when the objects must interact
with corporate databases.

The architecture, as seen by the
client, is much simpler. Clients don’t
see proxies, ORBs, Servers, or remote
machines. From the client perspective,
the architecture is as shown in Figure 2.

Sample code
Let’s look at one of our standard dogs.
The dog definition, dog.idl, is:

#include <somobj.idl>

string bark();

void setBark(
in string newBark);

implementation {
string myBark;
dllname = "dog.dlL";

Listing 3: Setting Snoopy’s bark.

46 OS/2MAGAZINE APRIL 1996

This example defines a dog that
responds to two methods: bark, which
returns a string containing the dog’s
bark, and setBark, which is used to tell
the dog what its bark is.

The C code implementing these
methods is shown in Listing 1. Notice
that nothing exists in the dog imple-
mentation that knows whether or not
the dog is going to be distributed.

The first will instantiate a Snoopy
obiject, the second will tell Snoopy what
his bark is, and the third will ask Snoopy
to bark. These three different programs
are running in three different processes,
and the Snoopy object is in a fourth.

In Listing 2, Line 1 includes the dis-
tributed SOM header file. Line 12 ini-
tializes the distributed SOM run time.
Line 14 asks the MD_ ObjectMgr to in-
stantiate a new remote object by typing
“dog.” Although the client believes a
“dog” has been returned, what has
actually been returned is a proxy to the
remotely instantiated dog. Line 16 cre-
ates an object reference for Snoopy.
Line 17 to19 opens a file by the name
of id.dat and writes into it
Snoopy’s object reference.

Line 21 tells SOMD_ObjectMgr that
the proxy is no longer needed. Lines 23
and 24 close down the system.

When the program completes, this
client process is no longer active. How-
ever, a remote server process is still run-
ning, which contains a live Snoopy
object that is ready to accept method
invocations.

In Listing 3, Snoopy is told what his
bark is in Program 2. With Listing 3,
many of these lines are obvious by com-
parison to Program 1. Lines 15 to 17
open the id.dat file and read in the object
reference. Using shared files is the stan-
dard SOM 2.1 out-of-the-box mecha-
nism for sharing object references. SOM
3.0 is expected to introduce a naming
service, which will allow processes to
share object references via well-known
names. It’s not difficult to implement a
naming-type service using SOM 2.1, but
it does require some advanced SOM pro-
gramming knowledge.

Line 19 asks the SOMD_ObjectMgr
to create a proxy from the object refer-
ence. Line 21 tells Snoopy his bark. Of
course, it's actually the Snoopy-proxy
that is told, and this proxy passes the
information on to the actual Snoopy.
Line 23 to 25 releases the proxy and
cleans up.

Listing 4: Askingb Snoopy to bark.




" NATURAL SELECTION?

There's nothing natural about it.

The World of Objects

Most of the remote-specific code has
to deal with either creating or freeing
object proxies. This code is expected to
be simplified in SOM 3.0 through a
mechanism described as local/remote
transparency, meaning that the same
client code will work for both local and
remote objects. Again, programming
techniques are available for local/re-
mote transparency even in SOM 2.1,
but they require advanced program-
ming abilities.

When Program 2 starts, it starts as a
new client process, independent of the
client process from which Program 1
ran. When this program completes, it
then exits. The server process contain-
ing Snoopy, who now thinks his bark is
“Woof Woof,"” is still running.

The program in Listing 4 is very
similar to Program 2 (Listing 3). The
only significant difference is line 20,
which asks Snoopy (actually the
Snoopy-proxy) to bark. The result of
this program, which demonstrates
how the Snoopy Server has evolved its
state as the three different client
processes have come and gone, looks

like the following:
Snoopy says Woof Woof.

Reflection
We have looked at a simple example
that was meant to demonstrate the
manipulation of remote objects. Similar
mechanisms can be used for highly
complex objects representing, say, store
inventory, customers, or bank accounts.
The main difficulty in programming
remote objects has to do with the proxy.
As we discussed, this difficulty can be
ameliorated using advanced program-
ming techniques and is expected to be
simplified in 3.0, although the code
shown here will still work.
Distributed object technology
allows flexible, sophisticated, and dis-

tributed applications to be built quick- -

ly. With the rapid growth of the Inter-
net, the demand for highly interactive
distributed applications is expected to
grow rapidly. SOM, with its ubiquitous
presence on the IBM product line and
beyond, is well positioned to be the
major contender in this field.

To date, IBM has been unfocused in
the object field as new products come
in from every direction with no obvi-
ous coordinated overall strategy. Even
within the SOM products line, there
appear to be multiple directions. If
SOM is to be successful, IBM must get
focused. It needs to realize that it can’t
do everything. IBM has great technolo-
gy for doing object distribution. Object
distribution is an important field. Now
is the time for IBM to turn its technical
strengths into marketing triumphs. [l

Roger Sessions is president of ObjectWatch
Inc., a company specializing in training
and consulting in the use of CORBA fech-
nologies on IBM platforms. He has spoken
at over 30 conferences and has written
extensively. His books include Object Per-
sistence: Beyond Object-Oriented Data-
bases, Class Construction in C and C++;
Object-Oriented Fundamentals, and
Reusable Data Structures for C. Roger
also publishes an Internet newsletter called
ObjectWatch on SOM and can be con-
tacted via e-mail at roger@fc.net.

Reader Service No. 22

Visit your local software store and -
pick up the sequel to the most St K Email: stardock@ol.com
celebrated 05/2 game of all time!

You had to kill off the dinosaurs to colonize
Antares . The Drengin Empire plans to do the
same fo you. After all it's only natural...isn't it?

Galactic Civilizations 2 is the long awaited sequel
to the award-winning 05/2 strategy game from
Stardock Systems. It has all the pulse pounding
features of the original plus new graphics, music
and a host of new features!

Phone: 313-453-0328

hitp://oeonline.com/~stardock

Stardock ond



