
The World of Objects 

Encapsulation 
and the EPIC Nature 
of Dogs 
BY ROGER SESSIONS 

I 
f we know that Lassie is a dog, then 
we know something about Lassie. 
If we know what dogs in general do 

and don't do, then we know what Lassie 
will and won't do. If we know that dogs 
bark when we ring the door bell, then 
we know that Lassie will bark when we 
ring the door bell. If we know dogs can't 
fly, then we know Lassie can't fly. 

But knowing that Lassie is a dog 
doesn't tell us everything about Lassie. 
It tells us what she does and under what 
circumstances, but not how. Unless we 
are an expert on the implementation of 
dogs, we have no idea how Lassie actu­
ally goes about the business of barking. 
We don't know how the millions of 
neurons in her brain fire in the correct 
sequence, what muscles are involved, or 
how she makes her vocal chords vibrate. 
All we know is that given an appropri­
ate stimulus, Lassie goes "Woof Woof." 

In fact, we can't even prove that 
Lassie is really doing the barking. For all 
we know, Lassie is using a tape recorder. 
Or Lassie might be nothing more than 
an elaborate puppet and her bark com­
ing from a good ventriloquist. Or 
maybe Lassie calls in a barking special­
ist whenever she hears the doorbell, 
and Lassie acts as nothing more than a 
noise broker. 

It is said that the truth shall set us 
free. In this case at least, it is our igno­
rance that sets us free. Or more precise­
ly, sets Lassie free. The less we know 
about Lassie, the more freedom Lassie 
has in her implementation. As long as 
she can figure out some way to make a 
whole bunch of noise when the door­
bell rings, we will be happy, feed her, 
and not ask silly questions. 

In object-oriented programming, we 
call this general principal encapsulation. 
Encapsulation says that we ask objects 

56 05/2 M A G A Z I N E M A R C H 1 9 9 6 

only what they do, not how they do it. 
An object, say Lassie, is encapsulated if 
its interactions with its client are deter­
mined only by its interface and not by 
its implementation. 

Comparison of 
three languages 
Lets look at the concept of interface 
from the perspective of three different 
programming languages, all supported 
on OS/2. These languages are C++, 
SOM's IDL (Interface Definition Lan­
guage), and good old reliable C. 

We describe objects by their inter­
faces. Loosely speaking, we can think of 
an interface as describing the behaviors 
or the methods that a class supports. 

Our dog class will support two meth­
ods, a setBark method, which is used to 
tell the dog what its bark is, and a bark 
method, which is used to tell the dog 
that the time has come to bark. Since 
Lassie is a dog, we know she will sup­
port these methods. 

In C++, using for example IBM's Vi­
sualAge C++ on OS/2, we could describe 
our dog interface as: 

class dog { 
public: 

void setBark(char *newBark); 
void barkO; 

private: 
char *myBark; 

} . , 

C++ breaks a class definition into 
two sections, a public and a private sec­
tion. The public one is the class's inter­
face. The private section is intended to 
be of interest only to the programmer 
implementing the interface and can 
change without warning. 

IDL (Interface Definition Language) 

is defined by the Object Management 
Group (OMG). It's unique in that the 
choice of the language used in the 
implementation of the class is not con­
strained by the language used to define 
the interface. In contrast to IDL, if we 
define our interface in C++, we can use 
only C++ for implementing our class. If 
we define our interface in IDL, we can 
use C++, C, COBOL, or any other lan­
guage that supports IDL. 

IBM considers IDL strategic and is 
supporting it, or planning on support­
ing it, with all of its languages on all of 
its platforms. The IBM implementa­
tion of IDL is called SOM, for the Sys­
tem Object Model. SOM has been 
available on OS/2 for a number of 
years now. 

In SOM IDL we can describe our dog 
interface like this: 

#include <somobj.idl> 
interface dog : SOMObject { 
void setBark( 

in char *newBark); 
void barkO; 
implementation { 

callstyle = "oidl"; 
} . , 

/ }; 

This dog interface contains a great 
deal of information, more than one 
might expect by looking at this decep­
tively simple definition. However, we 
are only interested in encapsulation and 
from this perspective the IDL dog inter­
face defines the same two methods as 
the C++ definition, setBark and bark 

This IDL definition, similar to its 
C++ counterpart, tells us that the set­
Bark method takes a single string para­
meter and that the bark method 
returns a string. Like C++, it doesn't tell 



The World of Objects 
................. ·········· ...........................................

...... . 

us how the dog stores that string. 

Extending the idea of encapsulation 

beyond C++, the IDL definition 

doesn't tell us in what language the 

code implementing setBark and bark 

is written. Also, IDL does not support 

the concept of public and private sec­

tions. If it's not part of the public inter­

face, it shouldn't be part of the IDL. At 

least, it shouldn't be part of the IDL 

you allow clients to see. 
A client that understands the con­

tract implied by the dog definition can 

write code against that contract. One 

example of C++ client code using this 

dog looks like the following: 

#include "dog.hpp" 

int main(} 
{ 

dog *Lassie; 

Lassie = new dog; 

Lassie->setBark( 

"Woof Woof"); 

Lassie->bark(); 

} 

On OS/2, this C++ source code is 

compatible with a dog defined in IDL 

and implemented in either C++ or C. It 

is also compatible with a dog both 

defined and implemented in C++. 

A C client can also use this dog if it is 

defined in IDL. This client looks like: 

#i.nclude <dog.h> 

int main(} 
{ 

dog Lassie; 

Lassie = dogNew<>; 

_setBark(Lassie, 

"Woof Woof">; 

_bark( Lassie); 

return(O); 
} 

This C code is compatible with a dog 

defined in IDL and implemented in 

either C or C++. It is not compatible 

with a dog defined and implemented in 

C++, because C++ does not support the 

use of its classes by other languages. 

We can even define and implement 

our encapsulated dog completely in C. 

An equivalent C definition for a dog is: 

struct dogType { 

char *myBark; 

}; 

58 05/2 M A G A Z I N E M A R C H 1 9 9 6 

typedef struct dogType *dog; 

void _setBark(dog thisDog, 

ch~r *newBark); 

void _bark(dog thisDog); 

dog dogNew(void); 

and a C implementation of this dog is: 

#include "dog.h" 

#include <string.h> 

#include <stdio.h> 

#include <stdlib.h> 

void _setBark( 

dog thi sDog, 

char *newBark) 
{ 

} 

thisDog->myBark 

(char*) malloc(strlen 

(newBark)+1); 

strcpy(thisDog->myBark, 

newBark>; 

void _bark(dog thisDog) 

{ 

} 

printf("%s\n", 

thisDog->myBark>; 

dog dog New () 
{ 

} 

return (dog) 

malloc(sizeof(dog)); 

This C implementation is compati­

ble with the C client that we looked at 

earlier, even though that client was 

written to use an IDL implementation. 

We say that these objects are all 

encapsulated, because the client code 

using these objects has no dependencies 

on the objects' implementations. All of 

the client interactions with these objects 

are defined by the objects' interface. 

Writing objects that 

are nonencapsulated 

· Just as we saw that we can write encap­

sulated objects in nonobject-oriented 

languages (such as C), we can also write 

poorly encapsulated objects in state-of­

the-art object-oriented languages. 

For example, we know our dog has 

to store its bark string. A nonencapsu­

lated implementation could store the 

bark string in global memory allocat­

ed by the client. In order to use this 

dog, the client must allocate a buffer, 

declare a global variable with a partie-

ular name, and set that variable to the 

previously allocated buffer. 

Because this implementation of 

dog requires the client to know quite 

a bit about how the dog manages its 

string storage (information that is not 

part of the interface), we say this dog 

implementation is not encapsulated. 

And we can write this sorry code in 

SOM, C++, or C. 

EPIC objects 
Encapsulated objects have what I call 

EPIC characteristics. EPIC stands for 

Exchangeable, Protectable, Isolatable, 

and Confidential. These characteristics 

are so important that even products 

like Microsoft's OLE, which rejects the 

other key ideas of object-oriented pro­

gramming, accepts the importance of 

encapsulation. 
Lets consider each of these in turn. 

Exchangeable 
The Ein EPIC stands for Exchangeable. 

Different implementations of well­

encapsulated objects can be exchanged 

for each other without impacting their 

clients. 
Lets consider two possible SOM 

implementations of our IDL dogs, both 

in C. The first stores the bark string in 

an internal character buffer as shown in 

Listing 1. 
The second implementation stores 

the bark string in a file as shown in 

Listing 2. 
Which is the right implementation? 

Both. Either works fine for our immedi­

ate needs. Because the dog is a well­

encapsulated object, these two imple­

mentations can be exchanged for each 

other without requiring source code 

changes to our client. In fact, by using 

SOM on q$/2, these changes can even 

be made/at run time by a simple DLL 

replacement. 
Our nonencapsulated dog, the one 

using the client-allocated global buffer, 

is not exchangeable with these two 

encapsulated versions. Without the 

client changing its source to allocate 

that buffer, that dog will not bark. 

Exchangeability gives the object 

implementor considerable flexibility. 

For example, it's a common practice to 

prototype interfaces with a simple 

implementation and then add more 

robust, better performing, or less limit­

ed code later in the development cycle. 



l 
Exchangeability also gives flexibili­

ty to the client, who can write code 
with one implementation of dog and 
then find, write, or purchase a better 
implementation at any time. 

Protectable 
The Pin EPIC stands for Protectable. 
Encapsulated objects are protected from 
odd behavior on the part of their clients. 

With encapsulated objects, clients 
interact with objects only through 
approved methods. These methods tan 
be guarded with code that checks and 
rejects invocations that would otherwise 
cause catastrophic failure, such as call­
ing the dog's setBark with a string that 
contains unprintable characters. 

Code using protected objects is very 
robust. It is almost impossible to break 
a well-protected object. 

Nonencapsulated objects do not sup­
port this level of protection. For exam­
ple, it would be very easy for the client 
of the nonencapsulated dog to place cor­
rupted values in the global memory 
used by the dog object. The next time 
that dog tries to bark, watch out! 

lsolatable 
The I in EPIC stands for Isolatable. 
Encapsulated objects can be written, 
tested, and debugged in full isolation 

-----~-~~ ·-

The World of Objects 

of the code that will be eventually 
using them. 

This ability to isolate the object 
implementation from other develop­
ment activity is a great advantage. It 
offers a natural mechanism for dividing 
large projects into a series of small well­
defined subprojects, all of which can be 
worked on in parallel. 

The goal of isolatability was shared 
by another historic programming 
methodology, structured program­
ming. Encapsulation, though, goes 
much further than structured program­
ming ever did. Structured program­
ming only offered techniques for parti­
tioning a program's logic. It offered 
nothing for dealing with the much 
more complex issue of a program's 
data. Encapsulation shows us how to 
partition both logic and data. 

Confidential 
The C in EPIC stands for Confidential. 
Encapsulated ob­
jects can keep their 
secrets. 

This issue can 
be significant for 
classes that will be 
marketed. When 
we sell classes, we 
want to ship noth-

ing but binary object files in the form 
of libraries and DLLs and interfaces def­
initions in the form of text files. We 
don't want to sell our source code. We 
consider our source code proprietary. 

The names of private methods and 
the design of our data structures can also 
give important clues to the nature of our 
algorithms. By showing our clients 
nothing but the public interface, we can 
keep our algorithms confidential. 

Of the three languages we have dis­
cussed, only SOM's IDL has first-rate 
support for confidentiality. C++ and C 
both require that private algorithm­
revealing information be openly dis­
played along with the interface. 

C++ actually has an even more seri­
ous problem in this area. C++ has very 
limited support for shipping class code 
in anything other than source code. 
This limited support is because of, 
among other reasons, a general lack of 
agreement among C++ compiler ven-

OS/2 M A G A Z I N E M A R C H 1 9 9 6 59 



Jl 

I 
,: I 

I' 

I 
,[I 

!i 
if 
r 

'I 

I 

•····· .................................................. The \'lo~l~ol ~bje~~ 
dors as to the nature of the run-time 
object model. In this regard, C is actu­
ally more advanced than C++. 

Conclusion 
We have looked at three different 
OS/2 technologies, C++, SOM, and C. 
We have seen that all of these tech­
nologies support encapsulation. 
Encapsulation is important because it 
allows the development of objects that 
are Exchangeable, Protectable, Isolat­
able, and Confidential. These are the 
EPIC characteristics of encapsulated 
objects. 

The best, but not the only, support 
for encapsulation comes from object­
oriented technology, and this is one of 
the factors driving its rapid adoption. 
All of these OS/2 technologies, both 
object-oriented and nonobject-oriented 
have good support for Exchangeability, 
Protectability, and Isolatability. Confi­
dentiality is mainly an issue for compa­
nies selling class libraries. In this area, 
SOM offers the best support, followed 
by C, followed by C++. 

Remember, that we can get poorly 
written nonencapsulated code using 

Now Get 

both C++ and SOM. We can also get 
well-written highly encapsulated code 
using C. This is as much a programmer 
issue as it is a technology issue. 

To keep all these options in perspec­
tive, just keep the following in mind. 
We want Lassie to be a good dog. The 
better encapsulated we make her, the 
more EPIC her character will be. 

News from 
the object front 
At the end of 1995, IBM made an 
important announcement. They have 
decided to license the Java technology 
for use in OS/2. Java is a new language 
which allows compiled objects to run 
on any hardware or software platform. 

This technology could work well 
with SOM. SOM allows methods to be 
invoked on objects living on other 
machines, but has no way of down­
loading the code necessary to imple­
ment those methods. Java offers the 
ability to download an object's imple­
mentation to any machine, but no 
way of allowing methods to be 
remotely invoked on that downloaded 
object. 

These two technologies offer a per­
fect complement to each other. How­
ever, the current information from 
IBM is sketchy. No information is 
available from the IBM announce­
ments or on the IBM World Wide Web 
pages, which claim to give the most 
recent Java information, to indicate 
that IBM understands the important 
relationship between Java and SOM. 
My friends within IBM assure me that 
this relationship is being investigated. 
I will be watching this topic very care­
fully and reporting on developments 
as they unfold. ~ 

Roger Sessions is president of ObjectW atch 
Inc., a company spedalizingin training and 
consulting in the use of SOM, DSOM, and 
related object-oriented technologies. He has 
spoken at over 30 conferences and has writ­
ten extensively. His books include Object 
Persistence: Beyond Object-Oriented 
Databases, Class Construction in C and 
C++; Object-Oriented Fundamentals, 
and Reusable Data Structures for C. Roger 
also publishes an Internet newsletter called 
ObjectWatch on SOM and can be con­
tacted via e-mail at roger@fc.net. 

In Charge! 
Deployment Insurance 
For Your Most Critical 

Applications 
Concerned about the reliability of your 
clientjsetver application? The Automated 
Test Facility delivers the kinds of testing 
today's mission-critical applications need. 
And that includes business workflow testing, 
which is vital for key information systems 
where there are user interdependencies. 
Only ATF, with its unique architecture, can 
simulate user behavior ~nd test for these 
interdependencies so t~at your system is 
tested under actual production conditions. 
Think of ATF as deployment insurance for 
your most critical applications. 

In Charge! is a full function personal 
finance system for OS/2. 

In Charge! supports: 
• Multiple sets of financial books 

• All types of accounts, from checking to stock margin 

• Multiple currencies 

• Multiple year budgeting 

• Securities management system 

• Powerful check printing facility 

And much more! 

In Charge! is available 
through dealers, or directly 
from Spitfire Software for only 

$ 7 9 +Shipping 

{404) 257-0187 • Fax: (404) 255-8032 

Reader Service No. 22 

ATF tests applications under Windows, 
Windows NT, Windows 95 and all flavors of OS/2. 

For information about ATF contact: 
Softbridge, Inc. 
125 CambridgePark Drive 
Cambridge, MA 02140 
Phone: (617) 576-2257 
Fax: (617) 864-7747 
market@sbridge.com 

Reader Service No. 23 


