
' 
' 
I : 
I,' 

The World of Objects 

Dynamic 
Frameworks 

BY ROGER SESSIONS 

I 
recently went to Edinburgh to 
teach a class in SOM (System 
Object Model). My client had 

asked me to focus the class on the 
nondistributed aspects of SOM. 

I must admit, I was at first per­
plexed by this request. I think of 
object distribution as the raison d'etre 
for SOM. What, I wondered, could 
my client's interest in SOM be, if not 
object distribution? Language neu­
trality? Release-to-release binary 
compatibility? 

It turned out my client was inter­
ested in all of these features. The 
group was even interested in object 
distribution. But the single greatest 
reason for using SOM was dynamic 
class loading. 

Dynamic vs. nondynamic 
class loading 
I have used dynamic class loading, 
but mostly for building generic 
DSOM servers. The class in Edin­
burgh gave me the opportunity to 
think about using this feature to 
develop truly dynamic frameworks. 

Dynamic class loading allows pro­
grams to make use of classes that are 
unknown at compile and build time. 
Dynamic class loading allows arbi­
trary classes to be loaded at run time 
on an as-needed basis. 

Let's consider a program that in­
stantiates a dog object as defined by 
dog.idl shown in Listing 1. This pro­
gram could be written in several 
ways, one of which is shown as ver­
sion 1 of test.c (Listing 2). Let's 
briefly review the purpose of the 
more important lines of test.c. 

Line 7 declares an object named 
classObject of type SOMClass. SOM­
Class is the default type of a class 

34 05/2 M A G A Z I N E D E C E M B E R 1 9 9 6 

object. Class objects know, among 
other things, how to instantiate 
objects of a given class (dog, in this 
case). I discussed class objects in 
more detail back in my May 1996 
column ("Metaclass and the Dogs of 
Shakespeare," pp. 51-55). 

Line 11 initializes the dog class. It 
does many things, among which is 
the instantiation of the dog class 
object. 

Line 12 assigns the dog class 
object to the variable classObject. 
We get the dog class object from the 
macro _dog. All SOM classes have an 
associated macro with which one can 
get the class object for that class. The 
macro takes the form _ <classname>; 
_dog, for example. 

Line 14 uses the somClass factory 
method somNew to create a new dog 
object. This method is defined in 
SOMClass and is supported by all 
class objects. It returns a new object 
of the type for which the receiving 
object is the class object. In this case, 
'the receiving object, classObject, is 
the class object for dogs, and, there­
fore, this method returns a new dog. 

The rest of the program is stan­
dard stuff. Line 16 asks our new dog 
to bark. Line 18 deinstantiates the 
object. Line 19 frees our environment 
variable. 

Version 1 of the program does not 
need dynamic class loading. It can 
build everything it needs directly 
into the test executable. If it does 
place the dog code into a DLL, it does 
so as a convenience. 

Let's consider a variation on this 
program. Suppose we want this pro­
gram to handle not only dogs, but 
arbitrary classes derived from dog. To 
make this program as general as pos-

sible, we will modify it to ask the user 
what kind of dog she wants and then 
create a class object for that particu­
lar type of dog. 

Our existing program needs some 
modifications. We can't use _dog to 
find our class object because we 
won't know what class we are going 
to load until the user tells us. 

For this type of a program, we 
have a new set of requirements. First, 
we need to map arbitrary strings to 
class objects. Second, we need a way 
of loading in object DLLs that we 
didn't know about when our exe­
cutable was built. 

SOM provides an object called the 
SOMClassMgrObject. This object 
knows how to map between strings 
and class objects and also how to 
load in object DLLs at run time. SOM~ 
ClassMgrObject is actually a global 
object reference to an object of type 
SOMClassMgr. The SOMClassMgr­
Object can be instantiated explicitly, 
by calling the SOMEnvironment­
New, or implicitly, through any of 
several calls to the SOM run time; for 
example, dogNew. 

The SOMClassMgr class and, 
therefore, the SOMClassMgrObject 
object, support many methods. The 
method we are most concerned with 
here is somFindClass. This method is 
the one which, given a string, returns 
a class object and, if necessary, 
dynamically loads in the DLL con­
taining that class's implementation. 

Based on our method description, 
we can predict that somFindClass 
will take several parameters. First, we 
expect it to take an Environment 
parameter, our standard parameter 
for returning error information. Sec­
ond, we expect it to take a string 



parameter, the name of the class we 
want dynamically loaded and whose 
class object we want returned. 

Oddly, neither of these two expec­
tations is met. The Environment is 
not passed, because SOMClassMgr is 
one of those pre-SOM 2.0 classes that 
was created before SOM adopted the 
COREA standard and, therefore, the 
Environment parameter. Also, the 
method does not take a string, al­
though it does take a parameter that 
is closely related. 

Instead of a string, SOMFindClass 
takes. a parameter type called a som­
Id. It's not worth going into the in­
ternals of a somld type. The most 
important thing to understand is that 
you can convert freely back and forth 
between a somld and a string, using 
the paired functions somldFrom­
String and somStringFromld. 

Now let's look at the second ver­
sion of test.c, modified to use the 
somFindClass method (Listing 3). 

The significant changes in Listing 
3 are: 

• Line 9 declares a local variable of 
type somld. 

• Line 10 declares a character array 
to hold the requested class name. 

• Lines 15 to 17 ask the user to type 
in the requested class and stores 
the result. 

• Line 19 converts the string con­
taining the class name into a 
somld. 

• Line 20 asks the SOMClassMgr­
Object to find the requested class, 
dynamically loading whatever 
DLL is necessary. 

• Lines 23 to 26 print an error mes­
sage if the requested class object 
couldn't be found. 

The World of Objects 
Listing 2: Version 1 of test. c. 

Listing 3: Version 2 of test. c. 

In line 21, you may notice two 
extra parameters on the somFind­
Class invocation: the two zeros. These 
methods are used to specify major and 
minor version requirements, a topic 
we won't cover here. Using zeros for 

these parameters tells the method we 
aren't interested in versions. 

To dynamically load in the DLL 
corresponding to a class, the SOM­
ClassMgrObject must be able to 
determine which DLLs implement 

05/2 M A G A Z I N E D E C E M B E R 1 9 9 6 35 



I 1 
I 

~ I 
I 

which classes. It finds this infor­
mation by using the interface reposi­
tory, a run-time-accessible database 
that contains information about class­
es, including the name of the DLL in 
which the class implementation lives. 

When we finish building our pro­
gram and the dog class library, we 
will have both a test.exe and a dogl. 
dll created. Here's a typical run of our 
test program, with user input in bold: 

Snoopy's Type: dog 
Snoopy says: Generic dog noise 

Of course, there are other possible 
outcomes. Consider this run: 

Snoopy's Type: LittleDog 

Sorry ... Can't Load LittleDog 

The difference between these two 
program runs occurs when somFind­
Class attempts to locate the request­
ed class in the interface repository. In 
the first case, dog is found in the in­
terface repository. In the second case, 
littleDog isn't. 

The World of Objects 
Now, this particular demonstra­

tion may not be very convincing. 
After all, test.c contained dog.h. 
How can we be sure that the test.exe 
was really using dynamic loading and 
wasn't merely calling code that had 
been preloaded in the dog.h file? 

Returning 

from Edinburgh, 

it occurred to me that 

frameworks are a lot 

like travelers. 

The best proof that somFindClass 
works as advertised is to use it to load 
a class that the executable couldn't 
possibly have known about at compile 

or build time. Therefore, we'll build a 
brand new DLL, one containing a 
littleDog. Its IDL definition will look 
similar to that of dog, with an over­
ride of the bark method. We will 
implement the littleDog bark method 
to type "woof woof". 

The important point is that test.c 
knows nothing about littleDogs or 
their DLLs. If we rerun this program 
without recompiling or rebuilding, 
we get a completely different result by 
virtue of the newly available littleDog 
DLL. The new output looks like: 

Snoopy's Type: LittleDog 

Snoopy says: woof woof 

Of course, our test program will 
still fail if we ask it to load a class we 
haven't yet implemented (say, bird). 
But at least now we know how to 
solve that problem. 

Importance of 
dynamic loading 
Most people will not use dynamic 
loading to write test programs that 

Can Your Client/Server 

Test Tool Tackle The Entire 
Testing Process? 

Now Get 

In Charge! ATF can. 
If you want to learn about 
ATF, fax this back to us at 

6 1 7-8 6 4-~7 4 7 

The Automated Test Facility tests applications under 
Windows NT, Windows 95, Windows, and 05/2. 

Name: ______________________________ _ 

Company:: ____________________________ _ 

Address: _________________________ _ 

City: ____________________________ _ 

State: _____________ Zip: ______ _ 

Tel: -------------------------------

~~ 
SQFTBRIDGE 

AutomatedTestFadfty 

125 CambridgePark Drive 
Cambridge, MA 02140 

Phone: 617-576-2257 
E-mail: market@sbridge.com 

www.sbridge.com 

Reader Service No. 12 

36 05/2 M A G A Z I N E D E C E M B E R 1 9 9 6 

In Charge! is a full function personal and small 
business finance system for OS/2. 

In Charge! supports: 

• Multiple sets of financial books 
• All types of accounts, from checking to stock margin 

• Multiple currencies 
• Securities portfolio management 
• Powerful check printing facility 
• CheckFree electronit bill payment 
• Graphical reports 
• Special small business functions 

And much more! 

In Charge! is available 
through dealers, or directly 
from Spitfire Software for only 

$ 7 9 +Shipping 

(404) 257-0187 • Fax: (404) 255-8032 

Reader Service No. 13 

-
/ 



ll 

will load on-demand dog classes. 
Most people will use this capability 
to create frameworks that can manip­
ulate classes that were unknown at 
the time the framework was built. 
This trick is very useful. 

For example, consider the prob­
lem my client is trying to solve. 
These folks were developing a large 
framework to manipulate business 
objects. The resulting framework exe­
cutable will be distributed through­
out the company. Other groups in 
the company will create their own 
specialized business objects and use 
the framework executable to manip­
ulate them. 

My client's code won't necessarily 
require a user to enter in the class of 
a business object. Other ways of let­
ting the framework know about 
newly available object classes are pos­
sible. Configuration files are one 
other common solution. 

Without dynamic loading capabil­
ity, framework distribution would 
have been very difficult. At the very 
least, the framework would have had 

The World of Objects 
to have been distributed as compiled 
.obj files, and framework program­
mers would have had to rebuild the 
product each time they wanted to 
add a new business object. Building a 
large, complex framework is by no 
means a trivial task. 

Frameworks 
and travelers 
Returning from Edinburgh, it oc­
curred to me that frameworks are a 
lot like travelers. 

There are those frameworks that 
are static. They are hardwired at com­
pile time to specific classes and work 
well as long as they aren't expected 
to deal with any others. These frame­
works do not require dynamic class 
loading. They are like the traveler 
that wants to plan a trip's every de­
tail before taking the first step. 

Then there are those frameworks 
that are dynamic. These frameworks 
require dynamic class loading to en­
sure that any object can be manipu­
lated, even those unknown at com­
pile time. These frameworks are like 

For Free! For more information order a free full function demo packet. 
Fax or mail this coupon to Alaska. Fax: +49/6196/95 72-22 

Company 

Reader Service No. 14 

the traveler that will take in any new 
sight, any new experience, at the 
drop of a hat. 

I am grateful to Edinburgh for re­
minding me how much I enjoy run­
time coordination of both my travels 
and my frameworks. 

The code for this article, including 
the makefiles and files not shown 
here, can be downloaded from the 
OS/2 Objects Home Page. Go to 
http://www.fc.net/-roger/owatch.htm 
and look for a link to code for OS/2 
Magazine articles. [i]fiJ 

Roger teaches and consults on OS/2 
Object technology. His books include the 
recently published Object Persistence­
Beyond Object-Oriented Databases. 
Roger also publishes the OS/2 Objects 
Home Page (http://www.fc.net/-roger/ 
owatch.htm). He can be contacted at 
roger@(c.net. 

05/2 M A G A Z I N E D EC E M B E R 1 9 9 6 37 


