
The World of Objects

My Girl Scouts Are
Badder Than Your
Girl Scouts
BY ROGER SESSIONS

S
orne of the best program­
ming students I've taught
have been 15- and 16-year

old Girl Scouts. At this age they are
old enough to deal with intellectual
issues, but still young enough to
have wonder. This is the general age
of my daughter Emily's troop. When
the troop leader (who also happens
to be my wife, Alice) asked me to
help them get their computer badge,
I was delighted.

I had two meetings. The first was
easy. We spent an hour on the Web
learning to do searches and dis­
cussing censorship and an hour at
our local computer store learning to
configure systems. But this still left
me a second meeting to fill.

I decided that I would use that
meeting to teach them C++ and how
to work with object frameworks.
Now I know most adults spend years
learning these topics, but I figured
these girls had three advantages.
First, they liked computers. Second,
they had nothing to unlearn. Third,

44 OS/2 M A G A Z I N E J U l Y l 9 9 6

nobody had ever told them these
topics were hard.

I set up a simple game framework.
The Girl Scouts then split into teams
and programmed game players. The
players then plugged into the game
framework and played against each
other.

The game was very successful. The
girls developed some fascinating
strategies, learned (with the help of
some knowledgeable C++ program­
mers) to turn these strategies into
algorithms, and then to turn those
algorithms into working C++ objects.
They also learned what it means to
work within an object framework.

It occurred to me that this project
would be even more interesting if
opened up to a larger audience. So
that is what I'm doing in this article.
I invite all of my readers to program
players for this framework, and we
will have a large playoff.

I especially urge readers who are
working with youth groups, such as
Girl-5couts and Boy Scouts, to in-

volve their youth and help them to
design strategies and submit players.
Many of these groups offer computer
badges, for which this project will
probably make them eligible. To
sweeten the pot, I am offering a first
prize ($100), second prize ($50), and
third prize ($25) to the best submis­
sions from youth groups. These
prizes have been donated by Object­
Watch Inc.

Here is the basic game setup. The
name of the game is "Dog Meets
Dog." The goal is to program various
types of dogs. The framework will
create one instance each of the vari­
ous dog types, and then set up a
series of rounds. In each round, two
dogs will be chosen to play against
each other. Each dog is told which
dog it is playing against in that
round. The dog then has to decide
whether it will share or steal from
the other dog. Both dogs make the
decision. Both dogs are then
informed of what the other dog
decided.

In each round, the framework
assigns payoffs to each dog. The unit
of payoffs is dog biscuits. If both
dogs deCide to steal, each dog is
awarded one dog biscuit. If both
dogs decide to share, each dog is
awarded three dog biscuits. If one
dog steals and the other shares, the
stealer gets five dog biscuits and the
sharer none.

A full game consists of many
rounds, many more rounds than
there are dog objects. In the course of
a game, each dog will meet each
other dog many times.

I did not originate the idea for
this game. I first ran into it in a book
that was published several years ago,

The World of Objects
and one I consider highly influential
in shaping my own philosophy. I am
not going to give the reference now,
because I want to encourage readers
to develop their own game strategies
rather than turn this into a research
project. I will give the reference in a
later article when I discuss the results
of this contest.

Although I did not originate this
basic game, I have added several fea­
tures I believe to be novel. First, I
have turned this into an object-ori­
ented framework. Second, I have set
up the players as instances of C++
classes and have programmed both
the overall framework and the dog
players in VisualAge C++ running on
OS/2. Third, I have made the players
dogs, which for some reason has
never before been done.

The game framework is typical of
many frameworks: it defines and
implements an architectural frame­
work in which objects operate and
interact. The framework itself is a
program. It instantiates specialized
objects and coordinates their inter­
actions. The pseudo-code for the
game framework program is shown
in Listing 1.

Two related interactions occur in
each round of the game. In the.
beginning of the round, the dogs are
asked what they want to do with
their opponents. At the end of the
round, the dogs are informed of
what their opponents decided to do
with them.

Each dog is assigned a unique,
stable ID, which is a long integer.
This ID is assigned by the frame­
work at the time the dog is instanti­
ated, and it never changes. The dogs
are identified to each other by this
ID. So when a dog is asked how it
wants to interact with dog 14, it can
base its decision on its history of
previous interactions with dog 14.
When the dog is told what dog 14
decided to do, it can make a note of
that information to be used in
future interactions when it meets
dog 14 again.

The dogs are not told about inter­
actions in which they did not partici­
pate; for example, dog 11 is not told

Listing 2: C++ Definition of a dog player.

05/2 M A G A Z I N E J U l Y 1 9 9 6 45

1:

i

of the outcome between dog 12 and
dog 3.

In an object-oriented framework,
base classes are typically provided.
These base classes contain both con­
crete methods (ones that have been
fully implemented) and abstract
methods (ones that have been
defined but not implemented). The

Listing 3: Definition of niceDog.

The World ol Objects
abstract methods are the hooks by
which programmers provide special­
ized objects.

As an example, let's look at the
C++ definition of dog, shown in List­
ing 2. I have simplified the definition
by showing only protected and pub­
lic areas.

First of all, let's consider the pur­
pose of the different protec­
tions. C++ provides three dif­
ferent protection types within
a class definition. The public
region defines information
about the class that anybody
can use. The protected region
defines information that can
be used only by methods in
this class or derived classes.
The private section defines
information that can only be
used by methods of this class
(dog).

The dog's public region
contains both virtual and

method cannot be overridden. If you
are not familiar with the concept of
overriding methods and polymor­
phism, see the February issue of OS/2
Magazine ("littleDogs, Polymor­
phism, and Frameworks," p. 46).

Two of the virtual methods are
declared using the peculiar C++ syn­
tax =0 (for example, lAmA()). This
syntax is used to declare an abstract
virtual method.

So the dog methods have the fol­
lowing characteristics:

Ill They may be public or protected.
Ill They may be virtual or non virtual.
Ill They may be abstract or concrete.

Let's see how we make these choices.
Methods that will be called by the

framework are public. An example of
this is the method meetOtherDog,
the method used by the framework
to ask the dog how it wants to inter­
act in this round. Methods that are

nonvirtual methods. A virtual used only within dog are private,
method can be overridden in and those intended for derived dog
a derived class. A nonvirtual types are protected. An example of a

protected method is whatHappened­

Listing 5: Implementation of sneakyDog's meetOtherDog.
lnPreviousMeetingWithThisDog, a
method intended to be used by the
override of meetOtherDog.

46 05/2 M A G A Z I N E J U l Y 1 9 9 6

Methods that the dog types either
may or must override are virtual.

Methods that the dog types may
override are concrete and virtual. An
example of a method that the dog
types may override is thislsWhat­
Happened, the method used by the
framework to tell the dog the result
of the round. The base class provides
a perfectly acceptable implementa­
tion of this but also allows the dog
types to override it, if the program­
mer has a better idea.

Methods that the dog types must
override are abstract and virtual. An
example of such a method is meet­
OtherDog. The whole point of this
game is for the dog to provide a dif­
ferent implementation of this
method, so no default is provided.

Methods that the dog may not
override are nonvirtual. Dogs are
not allowed to change their IDs, so
the methods that deal with IDs,
such as whatlsYourNumber are
non virtual.

A typical dog type will be relative­
ly simple, overriding exactly two
methods: lAmA and meetOtherDog.

lAmA is used by the framework to
determine the class of the dog. meet­
OtherDog is used to determine the
dog's decision on the round.

A typical example of a dog type is
niceDog (Listing 3). Like all players,
niceDog is derived from our frame­
work-provided dog. As you can see,
the actual work involved with defin­
ing a new dog type is much less
than you would expect from the dog
discussion. Notice that while nice­
Dog doesn't say anything about
overriding the meetOtherDog
method, this is implied by the fact
that the base class declared the
method virtual.

niceDog uses one of the simplest
possible algorithms in its implemen­
tation of meetOtherDog. Its code is
shown in Listing 4. It always shares.
We might rename niceDog to be
patsy Dog.

I have also implemented a bad­
Dog, a dog that always steals.

Most dogs will base their decision
on whether to share or steal with a
particular dog on information about
previous encounters with that dog.
The protected virtual methods
defined for dog are provided for that
purpose. One example of such a dog
is sneakyDog, who always does the
reverse of what he did last time he
met that dog. If last time he shared,
this time he steals. sneakyDog's
implementation of meetOtherDog is
shown in Listing 5. sneakyDog is
one of the dogs the Girl Scouts
invented.

sneakyDog bases his share/steal
decision only on the last interaction
with the other dog. unforgivingDog
looks through the entire previous
history of interactions with the
other dog. If the other dog ever
stole, then unforgivingDog steals.
She never gives you another chance.
Her implementation is shown in
Listing 6.

Notice that both sneakyDog and
unforgivingDog make extensive use
of the protected dog methods. None
of the dog implementations shown
here take advantage of the opportu­
nity to override these methods. I
don't see why anybody would want
to override these, but I also don't
want to eliminate the possibility.

Let's look at a few rounds of this
game. Figure 1 shows six rounds and

The World of Objects

Figure 1: Six rounds of dog meets dog.

the decisions each dog makes based
on their own implementations of
meetOtherDog. Notice that the
framework instantiates only one of
each dog type.

This should give you an idea of
the game. Now it's your turn. Can
you beat puddingHeadDog, another
of Troop 161's inventions? Or how
about jeanBobDog? (This is a Texas
troop!)

Fine Print
OK. Here is the deal:

1. All entries must be e-mailed to
roger@{c.net before September 1st. All
entries must have a return e-mail
address.

2. All entries must compile on
VisualAge C++ on OS/2 without
warnings or errors. I will not fix
errors or warnings.

3. In the event that I am inundat­
ed with entries, I reserve the right to
limit the contest to the first SO
entries from youth groups.

4. One instance of each dog will
be instantiated and played against
each other dog. Each dog will play
against each other dog at least five
times, perhaps much more.

5. An entry consists of a header
file (similar to Listing 3) and an
implementation file consisting of
code for lAmA, modeled after the

The World Of Objects, cont'd on p. 63

05/2 M A G A Z I N E J U L Y 1 9 9 6 47

•

__ \._.-··- ·-

Objects
The World of Objects, cont'd {romp. 47
code in Listing 4, and meetOther­
Dog, using the algorithm of your
choice.

6. Youth groups are allowed to
have help with the coding, but you
must promise that they developed
the algorithms on their own.

7. One entry per e-mail address.
If a youth group is involved, it must
be identified.

8. No cheating by overriding
methods you shouldn't override or
updating private data you shouldn't
be accessing.

So? Are you in?
Your first stop is the SOMobjects

Home Page where I will maintain a
full set of the official rules and a .zip
file containing· all the files you need
to· compile and test this framework
using VisualAge C++. I will include
several sample dog types. On the
SOMobjects Home Page, look for a
link to the OS/2 Magazine Dog Meets
Dog Contest. The URL for the SOM­
objects Home Page is http://www.fc.
net/-roger/owatch.htm.

Good luck. You'll need it. My
Girl Scouts are bad. Dim

Acknowledgements
I am grateful to Girl Scout Troop
161 (Amy, Emily, Meg, Catie, Erin,
Zer, and Chandra) and its intrepid
leader (and my wife) Alice Sessions
for their inspiration for this article.

Roger Sessions is president of Object­
Watch Inc., a company specializing in
training and consulting in the use of
SOM and DSOM. He has spoken at over
30 conferences and has written exten­
sively. His books include Object Persis­
tence: Beyond Object-Oriented
Databasesi Class Construction in C
and C++: Object-Oriented Funda­
mentalsi and Reusable Data Struc­
tures for C. Roger also publishes an
Internet newsletter called Object Watch
on SOM and can be contacted on the
Internet at roger@{c.net. ·

REXX

The REXX Column, cont'd from p. 56
By using a trace instruction that

gets its settings from your own envi­
ronment variable, you can eliminate
this hassle. I use an environment vari­
able of TRACE in my own programs
and have a group of instructions, all
written as a single line with the
instructions separated with semi­
colons, which I move around in the
program as I need it. When I want it
out of the way, I move the entire line
to a position in the program where
program flow will never reach it. I call
this instruction my "magic" trace
instruction, and it lies dormant in
skeleton.cmd until I need it. I can then
move it to the point where I want it
and run the program with an envi­
ronment variable of SET TRACE=?R
to cause interactive tracing. I then
reset the environment variable with
SET TRACE= to negate the trace. Dim

Dick Goran is the author of The REXX
Reference Summary Handbook, an
OS/2 reference. He has been in the com­
puter industry since 1961 and was in
the IBM mainframe systems software
development business until 1987. He
teaches OS/2 REXX to corporate clients
and lectures on OS/2. His free REXX
utility programs can be downloaded
from OS2DF1, Lib 6 on CompuServe or
FTPed from ftp://ftp.cfsrexx.com/pub.
He can be reached via e-mail at
71154.2002@compuserve.com.

RE:XXLIB ($50)
Quercus Systems
(408) 867-7399
· WWW http:/ jwww. quercus-sys. com
READER SERVICE NO. 120

Rexx SuperSet/2
($79.00)
Gamma Tech
(405) 947-8080
E-mail72274.102@compuserve.com
READER SERVICE NO. 121

Dave Boll's RXU (free
for download)
FTP ftp.cfsrexx.comjpubjrxu 19.zip

05/2 M A G A Z I N E J U l Y 1 9 9 6 63

