
The World of Objects 

littleDogs, 
Polymorphism, and 
Frameworks 
BY ROGER SESSIONS 

T 
he three pillars of object-ori­
ented programming are en­
capsulation, inheritance, 

and polymorphism. Encapsulation 

and inheritance are well understood 

by most object-oriented program­

mers. However, many object-oriented 

programmers, even some with years of 

experience, are confused about poly­

morphism. Many do not even agree as 

to the meaning of the word. 
What is especially interesting 

about this general state of confusion is 

that, of these three pillars, polymor­

phism is by far the most important. 

Encapsulation is nice, but hardly a 

major advance in the state of the art. 

Inheritance allows new functionality to 

be added to existing classes, but this is 

rarely useful in real life. Polymorphism, 

on the other hand, is the enabling tech­

nology for frameworks. Frameworks are 

one of the most important advances in 

code reusability since the 
invention of procedures. 

Whoever coined the word 
"polymorphism" made a bad 
choice. The reason most pro­
grammers do not understand 
polymorphism is because the 
WQrd itself is so intimidating. 
It's easy to relate to encapsu­
lation and inheritance, terms 
for which we have intuitive 
feelings. But who can relate 
to polymorphism? 

In this column, let's 
expore the concept of poly­
morphism. We could choose 
any number of object-orient­
ed programming languages 
for the discussion, because all 
support this concept, but let's 
use IBM's SOM technology 
with the C language bindings. 

46 OS/2 M A G A Z I N E F E B R U A R Y 1 9 9 6 

SOMis IBM's foundational object­

oriented strategy. It has long been asso­

ciated with OS/2, but is now becoming 

available on other IBM platforms such 

as MVS and AS400. I like SOM because 

it is language neutral. I can do my actu­

al programming in many different lan-

guages. SOM has other advantages, 

which I will discuss in future columns. 
Everything you need to know· 

about polymorphism can be summa­

rized in four words. If you can remem­

ber these four words, you will under­

stand polymorphism: 

LittleDogs go woof woof 

Let's see what this means. The 

word polymorphism comes from two 

Greek words, polys, meaning many, 

and morpho, meaning form. It's often 

used as an adjective, such as polymor­

phic method. It means that a class can 

have many forms of a given method, 

and the object run time can decide 

which will be used in a given situation. 

Orfali, Harkey, and Edwards, in their 

new book The Essential Distributed 

Objects Survival Guide, say "Polymor­

phism is a high -brow way of saying that 
the same method can do dif­
ferent things, depending on 
the class that implements it." 

Let's look at a very simple 
SOM class. Listing 1 shows a 
definition of a dog. Our dog is 
derived from SOMObject, 

/because in SOM all objects are 
derived, directly or indirectly, 
from SOMObject. Our dog 
has two associated methods, 
print and bark. A release order 
is included to ensure upward 
binary compatibility. An oidl 
callstyle is used to avoid pass­
ing around an environment 
variable, which is a good pro­
gramming style, but superflu­
ous to this discussion. 

Listing 2 shows the dog's 

implementation. Most of the 
lines were generated by the 



I 
I· 

I 
I, 

II 
'I 

SOM precompiler. Two lines were 
added inside the print method and one 
line inside the bark method. The imple­
mentation of the bark method includes 
a standard SOM print statement and an 
invocation of the bark method. When 
invoking a SOM method in C, we pass 
the target object as the first parameter. 
The target object of the bark method is 
the same as the target object of the print 
method, thus we just pass through sam­
Self as the target parameter. 

Notice that the invocation of the 
bark method inside pririt uses the form: 

_bark(somSelf) 

instead of the form in which the code 
is actually written: 

barkCsomSelf) 

The underscore in front of the method 
name shows how, in the SOM C bind­
ings, we invoke a method rather than a 
procedure. 

When the print method is invoked, 
and it in turn invokes bark, what code 
will be called? The most logical guess 
would be the bark method that is imple­
mented in the same file. This guess 
appears to be validated by the client pro­
gram (Listing 3).The program in Listing 
3 instantiates a dog named Snoopie and 
asks him to print himself. The output 
that this program generates is: 

My noise is generii dog noise 

It's crystal clear that dog's print 
invokes dog's bark. The output is as 
expected, and no other candidate bark 
method exists. 

Now let's slightly complicate the sit­
uation. Listing 4 defines bigDog. big­
Dog is derived from dog. It adds no new 

48 05/2 M A G A Z I N E n B R U A R Y 1 9 9 6 

The WoPid of Objects 

methods, but overrides one of the dog 
methods: bark. Overriding means that 
it redefines what it means to bark for 
bigDog. The bigDog implementation of 
bark is shown in Listing S. You can see 
from the print statement that bigDogs 
bark quite differently than dogs. 

Listing 6 defines yet another dog, a 
littleDog, also derived from dog, and 
also redefining the bark method. Its 
implementation is shown in Listing 7. 

Now we have three versions of bark, 
one for dog, littleDog, and bigDog. How 
will the system sort this out? 

In Listing 8 a 
client program 
that instantiates 
Snoopie (a dog), 
Toto (alittleDog), 
and Lassie (a big­
Dog) is shown. It 
invokes print on 
each of these ob­
jects. Looking 
back on Listing 2, 
inside the imple­
ment~tion of 
dog's print we see 
a simple invo­
cation of bark. 
No visible branch 
code exists. The invocation of bark is 
unconditional and unequivocal. 

So what output do we expect from 
the program in Listing 8? With stan­
dard C procedural calls, we would 
expect the same version of bark to 
be invoked in each case. The most 
likely output from this program 
would be: 

My noise is generic dog noise 

My noise is generic dog noise 

My noise is generic dog nbise 

One of these lines would come from 
each of the three dog print invocations, 
using the target objects Snoopie, Toto, 
and Lassie, respectively. The actual out­
put this action generates is quite differ­
ent. It is: 

My noise is generic dog noise 

My noise is woof woof 

My noise is WOOF WOOF WOOF WOOF 

It's clear that the dog's print behaves 
very differently when invoked on each 
dog. When invoked on Snoopie, it 
invokes the dog's bark. When invoked 
on Toto, it invokes the littleDog's bark. 
When invoked on Lassie, it invokes the 
bigDog's bark. This response is true 
even though the exact same print 
(dog's) is invoked in all three cases. We 
know it's the same print method in all 
three cases because only one print 
method is defined (and implement­
ed)-dog's. This ability of print to auto­
matically route to different bark imple­
mentations based on the type of target 
object is called polymorphism. 

The contrast between polymorphic 
resolution and standard procedural res­
olution is seen by changing a single 



character in our program. By removing 
the underscore in front of the bark 
invocation within the print 
implementation in Listing 2, 
the same client program gives 
a very different result. 

My noise is generic dog 
noise 
My noise is generic dog 
noise 
My noise is generic dog 
noise 

Using the underscore in 
front of bark tells SOM to use 
polymorphic method resolu­
tion. By removing the under­
score, SOM assumes we are 
making a standard procedure 
call. Standard procedure resolution 
says that all calls to a given procedure 
name route to the same code location. 
In this case, that location is the dog's 
bark. 

Obviously polymorphic resolution 
must be accomplished at run time, not 
compile time. At compile time, print 
only knows about dogs. It has no way 
to know that it will someday be 
invoked on a littleDog. In fact, it 
doesn't even know that such things as 
littleDogs exist. Only at run time can 
we look at the actual type of a target 
object and route accordingly. 

Without polymorphic resolution, 
Toto would be forever constrained to 
making a "generic dog noise." It is 
only through the run-time magic of 
polymorphic resolution that Toto can 
say "woof woof." That's all 
you need to know about 
polymorphism. 

Frameworks 
What does all this stuff 
have to do with frame­
works? Frameworks are 
architectural contexts with- · 
in which objects interact. 
Orfali, Harkey, and Edwards 
write, "a framework pro­
vides an organized environ­
ment for running a collec­
tion of objects." 

Frameworks are impor­
tant because they offer 
massive opportunities for 
code reuse. They take 
advantage of the fact that 

The World of Objects 

nearly all of the interactions between 
objects can be defined generically. 

However, in order for a framework to 
be useful, it must be extensible. 

Extensibility means 
working with a wide range 
of objects, including objects 
that the framework doesn't 
even know about. How can 
a framework function with 
unknown types of objects? 
The answer is through the 
use of polymorphic method 
resolution. The framework 
says, "I can work with any 
type of object, as long as it 
supports these methods." 
The framework assumes all 
objects are derived from 
some framework-provided 
base type, and each object 
type overrides the methods 

it needs to special~ze. 
The program in Listing 8 can be 

thought of as a very simple framework; 
one that coordinates the bark activity 
of various dogs. You can add any dog 
type you want, as long as that type is 
derived directly or indirectly from dog 
and overrides the bark method. 

An example of a more serious frame­
work might be a GUI framework that 
allows objects to be dragged, resized, or 
hidden. The framework might provide 
a base type called graphicObject. The 
graphicObject could support a re­
paintYourself, which takes as parame­
ters a screen area in which to repaint. 

This framework might not have any 
idea what graphical objects will even­
tually be created. All it knows is that 
whatever those types are, they will be 

derived from graphicOb­
ject and will support the 
repaint Yourself method. 

Users of this GUI frame­
work now have great tech­
I).Ology for creating graphi­
,cal objects. Suddenly they 
can have dogs, littleDogs, 
bigDogs, and animals of all 
types that support the very 
complex algorithms of 
drag, resize, and hide­
courtesy of the GUI frame­
work. All the objects have 
to know is how to repaint 
themselves. 

Let's look at another 
example. Consider a phone 
company that needs to 
write a program to coordi-

05/2 M A G A Z I N E F E B R U A R Y 1 9 9 6 49 



J 
! I 

! 

:I 
I' 

I 
'' 

nate the activity of many different types 
of telephones. The company needs this 
program to be highly modifiable. They 
know the phones they currently sup­
port, but not what new phone services 
will be offered in the future. They need 
to be easily flexible to be competitive. 

Reader Service No. 21 

50 OS/2 M A G A Z I N E F E B R U A R Y 1 9 9 6 

The World of Objects 

A framework is an ideal 
mechanism for this compa­
ny. The company defines the 
basic expectations of a phone 
type (Listing 9). It then writes 
a framework that defines how 
phone objects will interact. 
The framework code, which 
defines one phone calling 
another, for example, might 
look similar to the example in 
Listing 10. This code depends 
on all phones supporting get­
NumberToCall, but does not 
depend on how those phones 
provide such support. 

A generic phone type 
might support the getNum­
berToCall method by read­
ing digits pressed on a touch 
pad. A new service, which 
supports speed dialing, 

might override this method and define 
a version that looks up numbers in a 
local database based on a two-digit key. 
Yet another system might use voice 
recognition technology to determine 
the calling number. The important 
point, from the framework's perspec-

tive, is not how getNumberToCall will 
be implemented, but only that it will be 
implemented as an override to the base 
method getNumberToCall, thus 
enabling polymorphic method resolu­
tion. 

Framework technology is exciting. It 
provides a highly adaptable mechanism 
for developing and reusing code. Poly­
morphism is basic to frameworks. The 
same mechanism that allows Toto to say 
"woof woof" also allows a million-line 
framework, such as Taligent, to coordi­
nate the activity of thousands of differ­
ent types of objects. , [!1W 

Roger Sessions is presidentofObjectWatch 
Inc. a company specializing in training 
and consulting in the use ofSOM, DSOM, 
and related 00 technologies. He has spo­
ken at over 30 conferences and has written 
extensively. His books include Object Per­
sistence: Beyond Object -Oriented Data­
bases, Class Construction inC and C++i 
Object-Oriented Fundamentals, and 
Reusable Data Structures for C. Roger 
also publishes an Internet Newsletter called 
ObjectWatch on SOM, and can be con­
tacted via e-mail at roger@{c.net. 

Deployment Insurance 
For Your Most Critical 

Applications 

Concerned about the reliability of your 
client; server application? The Automated 
Test Facility delivers the kinds of testing 
today's mission-critical applications need. 
And that includes business workflow testing, 
which is vital for key information systems 
where there are user interdependencies. 
Only ATF, with its unique architecture, can 
simulate user behavior and test for these 
interdependencies so that your system is 
tested under actual production conditions. 
Think of ATF as deployment insurance for 
your most critical applications. 

ATF tests applications under Windows, 
Windows NT, Windows 95 and all flavors of OS/2. 

For information about ATF contact: 
Softbridge, Inc. 
125 CambridgePark Drive 
Cambridge, MA 02140 
Phone: (617) 576-2257 
Fax: (617) 864-77 47 
market@sbridge.com 

Reader Service No. 22 


